A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning
- URL: http://arxiv.org/abs/2311.02100v1
- Date: Tue, 31 Oct 2023 23:26:58 GMT
- Title: A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning
- Authors: Ishmeet Kaur and Adwaita Janardhan Jadhav
- Abstract summary: Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancement in the field of machine learning is unavoidable, but something of
major concern is preserving the privacy of the users whose data is being used
for training these machine learning algorithms. Federated learning(FL) has
emerged as a promising paradigm for training machine learning models in a
distributed and privacy-preserving manner which enables one to collaborate and
train a global model without sharing local data. But starting this learning
process on each device in the right way, called ``model initialization" is
critical. The choice of initialization methods used for models plays a crucial
role in the performance, convergence speed, communication efficiency, privacy
guarantees of federated learning systems, etc. In this survey, we dive deeper
into a comprehensive study of various ways of model initialization techniques
in FL.Unlike other studies, our research meticulously compares, categorizes,
and delineates the merits and demerits of each technique, examining their
applicability across diverse FL scenarios. We highlight how factors like client
variability, data non-IIDness, model caliber, security considerations, and
network restrictions influence FL model outcomes and propose how strategic
initialization can address and potentially rectify many such challenges. The
motivation behind this survey is to highlight that the right start can help
overcome challenges like varying data quality, security issues, and network
problems. Our insights provide a foundational base for experts looking to fully
utilize FL, also while understanding the complexities of model initialization.
Related papers
- Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - Enhancing Data Provenance and Model Transparency in Federated Learning
Systems -- A Database Approach [1.2180726230978978]
Federated Learning (FL) presents a promising paradigm for training machine learning models across decentralized edge devices.
Ensuring the integrity and traceability of data across these distributed environments remains a critical challenge.
We propose one of the first approaches to enhance data provenance and model transparency in FL systems.
arXiv Detail & Related papers (2024-03-03T09:08:41Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - CDKT-FL: Cross-Device Knowledge Transfer using Proxy Dataset in Federated Learning [27.84845136697669]
We develop a novel knowledge distillation-based approach to study the extent of knowledge transfer between the global model and local models.
We show the proposed method achieves significant speedups and high personalized performance of local models.
arXiv Detail & Related papers (2022-04-04T14:49:19Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
We propose a fully decentralized approach, which allows to share knowledge between trained models.
Students are trained on the output of their teachers via synthetically generated input data.
The results show that an untrained student model, trained on the teachers output reaches comparable F1-scores as the teacher.
arXiv Detail & Related papers (2021-02-01T14:38:54Z) - Federated Edge Learning : Design Issues and Challenges [1.916348196696894]
Federated Learning (FL) is a distributed machine learning technique, where each device contributes to the learning model by independently computing the gradient based on its local training data.
implementing FL at the network edge is challenging due to system and data heterogeneity and resources constraints.
This article proposes a general framework for the data-aware scheduling as a guideline for future research directions.
arXiv Detail & Related papers (2020-08-31T19:56:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.