Pulling Back the Curtain: Unsupervised Adversarial Detection via Contrastive Auxiliary Networks
- URL: http://arxiv.org/abs/2502.09110v1
- Date: Thu, 13 Feb 2025 09:40:26 GMT
- Title: Pulling Back the Curtain: Unsupervised Adversarial Detection via Contrastive Auxiliary Networks
- Authors: Eylon Mizrahi, Raz Lapid, Moshe Sipper,
- Abstract summary: We propose an Unsupervised adversarial detection via Auxiliary Contrastive Networks (U-CAN) to uncover adversarial behavior within auxiliary feature representations.
Our method surpasses existing unsupervised adversarial detection techniques, achieving superior F1 scores against four distinct attack methods.
- Score: 0.0
- License:
- Abstract: Deep learning models are widely employed in safety-critical applications yet remain susceptible to adversarial attacks -- imperceptible perturbations that can significantly degrade model performance. Conventional defense mechanisms predominantly focus on either enhancing model robustness or detecting adversarial inputs independently. In this work, we propose an Unsupervised adversarial detection via Contrastive Auxiliary Networks (U-CAN) to uncover adversarial behavior within auxiliary feature representations, without the need for adversarial examples. U-CAN is embedded within selected intermediate layers of the target model. These auxiliary networks, comprising projection layers and ArcFace-based linear layers, refine feature representations to more effectively distinguish between benign and adversarial inputs. Comprehensive experiments across multiple datasets (CIFAR-10, Mammals, and a subset of ImageNet) and architectures (ResNet-50, VGG-16, and ViT) demonstrate that our method surpasses existing unsupervised adversarial detection techniques, achieving superior F1 scores against four distinct attack methods. The proposed framework provides a scalable and effective solution for enhancing the security and reliability of deep learning systems.
Related papers
- HPAC-IDS: A Hierarchical Packet Attention Convolution for Intrusion Detection System [0.8437187555622164]
This research introduces a robust detection system against malicious network traffic, leveraging hierarchical structures and self-attention mechanisms.
The proposed system includes a Packet Segmenter that divides a given raw network packet into fixed-size segments that are fed to the HPAC-IDS.
Experiments performed on CIC-IDS 2017 dataset show that the system exhibits high accuracy and low false positive rates.
arXiv Detail & Related papers (2025-01-09T15:24:49Z) - Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only.
Our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side.
Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part.
arXiv Detail & Related papers (2024-11-15T11:06:24Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - Salient Feature Extractor for Adversarial Defense on Deep Neural
Networks [2.993911699314388]
Motivated by the observation that adversarial examples are due to the non-robust feature learned from the original dataset by models, we propose the concepts of salient feature(SF) and trivial feature(TF)
We put forward a novel detection and defense method named salient feature extractor (SFE) to defend against adversarial attacks.
arXiv Detail & Related papers (2021-05-14T12:56:06Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision.
Existing defenses are trend to harden the robustness of models against adversarial attacks.
We propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples.
arXiv Detail & Related papers (2020-09-06T13:57:17Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.