Edge-Only Universal Adversarial Attacks in Distributed Learning
- URL: http://arxiv.org/abs/2411.10500v1
- Date: Fri, 15 Nov 2024 11:06:24 GMT
- Title: Edge-Only Universal Adversarial Attacks in Distributed Learning
- Authors: Giulio Rossolini, Tommaso Baldi, Alessandro Biondi, Giorgio Buttazzo,
- Abstract summary: In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only.
Our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side.
Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part.
- Score: 49.546479320670464
- License:
- Abstract: Distributed learning frameworks, which partition neural network models across multiple computing nodes, enhance efficiency in collaborative edge-cloud systems but may also introduce new vulnerabilities. In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only, which consists in the first network layers. Unlike traditional universal adversarial perturbations (UAPs) that require full model knowledge, our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side. Specifically, we train lightweight classifiers from intermediate features available at the edge, i.e., before the split point, and use them in a novel targeted optimization to craft effective UAPs. Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part. Additionally, we analyze the capability of an attacker to achieve targeted adversarial effect with edge-only knowledge, revealing intriguing behaviors. By introducing the first adversarial attacks with edge-only knowledge in split inference, this work underscores the importance of addressing partial model access in adversarial robustness, encouraging further research in this area.
Related papers
- Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
We introduce Celtibero, a novel defense mechanism that integrates layered aggregation to enhance robustness against adversarial manipulation.
We demonstrate that Celtibero consistently achieves high main task accuracy (MTA) while maintaining minimal attack success rates (ASR) across a range of untargeted and targeted poisoning attacks.
arXiv Detail & Related papers (2024-08-26T12:54:00Z) - Saliency Diversified Deep Ensemble for Robustness to Adversaries [1.9659095632676094]
This work proposes a novel diversity-promoting learning approach for the deep ensembles.
The idea is to promote saliency map diversity (SMD) on ensemble members to prevent the attacker from targeting all ensemble members at once.
We empirically show a reduced transferability between ensemble members and improved performance compared to the state-of-the-art ensemble defense.
arXiv Detail & Related papers (2021-12-07T10:18:43Z) - Defensive Tensorization [113.96183766922393]
We propose tensor defensiveization, an adversarial defence technique that leverages a latent high-order factorization of the network.
We empirically demonstrate the effectiveness of our approach on standard image classification benchmarks.
We validate the versatility of our approach across domains and low-precision architectures by considering an audio task and binary networks.
arXiv Detail & Related papers (2021-10-26T17:00:16Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Explainability-Aware One Point Attack for Point Cloud Neural Networks [0.0]
This work proposes two new attack methods: opa and cta, which go in the opposite direction.
We show that the popular point cloud networks can be deceived with almost 100% success rate by shifting only one point from the input instance.
We also show the interesting impact of different point attribution distributions on the adversarial robustness of point cloud networks.
arXiv Detail & Related papers (2021-10-08T14:29:02Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
In particular, our layer generates an input perturbation in the opposite direction of the adversarial one.
We verify the effectiveness of our approach by combining our layer with both nominally and robustly trained models.
Our anti-adversary layer significantly enhances model robustness while coming at no cost on clean accuracy.
arXiv Detail & Related papers (2021-03-26T09:36:59Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
Adrial training is the main method for improving adversarial robustness and the first line of defense against adversarial attacks.
This paper provides a new perspective on the issue of adversarial robustness, one that shifts the focus from the network as a whole to the critical part of the region close to the decision boundary corresponding to a given class.
Experimental results on the MNIST and CIFAR-10 datasets show that this approach greatly improves adversarial robustness even using a very small dataset from the training data.
arXiv Detail & Related papers (2020-08-18T10:23:57Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.