A Novel Dialect-Aware Framework for the Classification of Arabic Dialects and Emotions
- URL: http://arxiv.org/abs/2502.09128v1
- Date: Thu, 13 Feb 2025 10:05:44 GMT
- Title: A Novel Dialect-Aware Framework for the Classification of Arabic Dialects and Emotions
- Authors: Nasser A Alsadhan,
- Abstract summary: Current research in emotion detection in the Arabic language lacks awareness of how emotions are exhibited in different dialects.
This research builds a novel framework that can identify and predict Arabic dialects and emotions from a given text.
It achieved an accuracy of 88.9% in classifying Arabic dialects, which outperforms the state-of-the-art results by 6.45 percentage points.
- Score: 0.0
- License:
- Abstract: Arabic is one of the oldest languages still in use today. As a result, several Arabic-speaking regions have developed dialects that are unique to them. Dialect and emotion recognition have various uses in Arabic text analysis, such as determining an online customer's origin based on their comments. Furthermore, intelligent chatbots that are aware of a user's emotions can respond appropriately to the user. Current research in emotion detection in the Arabic language lacks awareness of how emotions are exhibited in different dialects, which motivates the work found in this study. This research addresses the problems of dialect and emotion classification in Arabic. Specifically, this is achieved by building a novel framework that can identify and predict Arabic dialects and emotions from a given text. The framework consists of three modules: A text-preprocessing module, a classification module, and a clustering module with the novel capability of building new dialect-aware emotion lexicons. The proposed framework generated a new emotional lexicon for different dialects. It achieved an accuracy of 88.9% in classifying Arabic dialects, which outperforms the state-of-the-art results by 6.45 percentage points. Furthermore, the framework achieved 89.1-79% accuracy in detecting emotions in the Egyptian and Gulf dialects, respectively.
Related papers
- Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion [55.27025066199226]
This paper addresses the need for democratizing large language models (LLM) in the Arab world.
One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding.
Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion.
arXiv Detail & Related papers (2024-12-16T19:29:06Z) - Exploiting Dialect Identification in Automatic Dialectal Text Normalization [9.320305816520422]
We aim to normalize Dialectal Arabic into the Conventional Orthography for Dialectal Arabic (CODA)
We benchmark newly developed sequence-to-sequence models on the task of CODAfication.
We show that using dialect identification information improves the performance across all dialects.
arXiv Detail & Related papers (2024-07-03T11:30:03Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - ALDi: Quantifying the Arabic Level of Dialectness of Text [17.37857915257019]
We argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi)
We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora.
arXiv Detail & Related papers (2023-10-20T18:07:39Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z) - Multi-VALUE: A Framework for Cross-Dialectal English NLP [49.55176102659081]
Multi- Dialect is a controllable rule-based translation system spanning 50 English dialects.
Stress tests reveal significant performance disparities for leading models on non-standard dialects.
We partner with native speakers of Chicano and Indian English to release new gold-standard variants of the popular CoQA task.
arXiv Detail & Related papers (2022-12-15T18:17:01Z) - Offensive Language Detection in Under-resourced Algerian Dialectal
Arabic Language [0.0]
We focus on the Algerian dialectal Arabic which is one of under-resourced languages.
Due to the scarcity of works on the same language, we have built a new corpus regrouping more than 8.7k texts manually annotated as normal, abusive and offensive.
arXiv Detail & Related papers (2022-03-18T15:42:21Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
We present the fundamentals behind the next version of the Perspective API from Google Jigsaw.
At the heart of the approach is a single multilingual token-free Charformer model.
We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings.
arXiv Detail & Related papers (2022-02-22T20:55:31Z) - Textless Speech Emotion Conversion using Decomposed and Discrete
Representations [49.55101900501656]
We decompose speech into discrete and disentangled learned representations, consisting of content units, F0, speaker, and emotion.
First, we modify the speech content by translating the content units to a target emotion, and then predict the prosodic features based on these units.
Finally, the speech waveform is generated by feeding the predicted representations into a neural vocoder.
arXiv Detail & Related papers (2021-11-14T18:16:42Z) - Sentiment Analysis in Poems in Misurata Sub-dialect -- A Sentiment
Detection in an Arabic Sub-dialect [0.0]
This study focuses on detecting sentiment in poems written in Misurata Arabic sub-dialect spoken in Libya.
The tools used to detect sentiment from the dataset are Sklearn as well as Mazajak sentiment tool 1.
arXiv Detail & Related papers (2021-09-15T10:42:39Z) - Automatic Arabic Dialect Identification Systems for Written Texts: A
Survey [0.0]
Arabic dialect identification is a specific task of natural language processing, aiming to automatically predict the Arabic dialect of a given text.
In this paper, we present a comprehensive survey of Arabic dialect identification research in written texts.
We review the traditional machine learning methods, deep learning architectures, and complex learning approaches to Arabic dialect identification.
arXiv Detail & Related papers (2020-09-26T15:33:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.