Modeling in Jjodel: Bridging Complexity and Usability in Model-Driven Engineering
- URL: http://arxiv.org/abs/2502.09146v1
- Date: Thu, 13 Feb 2025 10:22:25 GMT
- Title: Modeling in Jjodel: Bridging Complexity and Usability in Model-Driven Engineering
- Authors: Antonio Bucchiarone, Juri Di Rocco, Damiano Di Vincenzo, Alfonso Pierantonio,
- Abstract summary: Jjodel is a cloud-based reflective platform designed to address the challenges of Model-Driven Engineering.<n>This article presents the motivation and requirements behind the design of Jjodel and demonstrates how it satisfies these through its key features.
- Score: 4.7948224390172784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Jjodel is a cloud-based reflective platform designed to address the challenges of Model-Driven Engineering (MDE), particularly the cognitive complexity and usability barriers often encountered in existing model-driven tools. This article presents the motivation and requirements behind the design of Jjodel and demonstrates how it satisfies these through its key features. By offering a low-code environment with modular viewpoints for syntax, validation, and semantics, Jjodel empowers language designers to define and refine domain-specific languages (DSLs) with ease. Its innovative capabilities, such as real-time collaboration, live co-evolution support, and syntax customization, ensure adaptability and scalability for academic and industrial contexts. A practical case study of an algebraic expression language highlights the ability of Jjodel to manage positional semantics and event-driven workflows, illustrating its effectiveness in simplifying complex modeling scenarios. Built on modern front-end technologies, Jjodel bridges the gap between theoretical MDE research and practical application, providing a versatile and accessible solution for diverse modeling needs.
Related papers
- ModelingAgent: Bridging LLMs and Mathematical Modeling for Real-World Challenges [72.19809898215857]
We introduce ModelingBench, a novel benchmark featuring real-world-inspired, open-ended problems from math modeling competitions across diverse domains.<n>These tasks require translating natural language into formal mathematical formulations, applying appropriate tools, and producing structured, defensible reports.<n>We also present ModelingAgent, a multi-agent framework that coordinates tool use, supports structured, creative solutions, and generates well-grounded, creative solutions.
arXiv Detail & Related papers (2025-05-21T03:33:23Z) - Establishing tool support for a concept DSL [0.0]
This thesis describes Conceptual, a DSL for modeling the behavior of software systems using self-contained and highly reusable units of concepts.
The suggested strategy is then implemented with a simple compiler, allowing developers to access and utilize Alloy's existing analysis tools for program reasoning.
arXiv Detail & Related papers (2025-03-07T09:18:31Z) - On the Utility of Domain Modeling Assistance with Large Language Models [2.874893537471256]
This paper presents a study to evaluate the usefulness of a novel approach utilizing large language models (LLMs) and few-shot prompt learning to assist in domain modeling.
The aim of this approach is to overcome the need for extensive training of AI-based completion models on scarce domain-specific datasets.
arXiv Detail & Related papers (2024-10-16T13:55:34Z) - ELICIT: LLM Augmentation via External In-Context Capability [16.237679215248196]
alg is a framework consisting of two modules designed to effectively store and reuse task vectors.
alg serves as a plug-and-play performance booster to enable adaptive elicitation of model capabilities.
arXiv Detail & Related papers (2024-10-12T03:19:06Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
We introduce the Multimodal Embodied Interactive Agent (MEIA), capable of translating high-level tasks expressed in natural language into a sequence of executable actions.
MEM module enables MEIA to generate executable action plans based on diverse requirements and the robot's capabilities.
arXiv Detail & Related papers (2024-02-01T02:43:20Z) - Towards Automated Support for the Co-Evolution of Meta-Models and
Grammars [0.0]
We focus on a model-driven engineering (MDE) approach based on meta-models to develop textual languages.
In this thesis, we propose an approach that can support the co-evolution of meta-models and grammars.
arXiv Detail & Related papers (2023-12-10T23:34:07Z) - PROMISE: A Framework for Developing Complex Conversational Interactions (Technical Report) [33.7054351451505]
We present PROMISE, a framework that facilitates the development of complex language-based interactions with information systems.
We show the benefits of PROMISE in the context of application scenarios within health information systems and demonstrate its ability to handle complex interactions.
arXiv Detail & Related papers (2023-12-06T18:59:11Z) - Parrot Mind: Towards Explaining the Complex Task Reasoning of Pretrained Large Language Models with Template-Content Structure [66.33623392497599]
We show that a structure called template-content structure (T-C structure) can reduce the possible space from exponential level to linear level.
We demonstrate that models can achieve task composition, further reducing the space needed to learn from linear to logarithmic.
arXiv Detail & Related papers (2023-10-09T06:57:45Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
We propose to use language models as a general-purpose interface to various foundation models.
A collection of pretrained encoders perceive diverse modalities (such as vision, and language)
We propose a semi-causal language modeling objective to jointly pretrain the interface and the modular encoders.
arXiv Detail & Related papers (2022-06-13T17:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.