On the Utility of Domain Modeling Assistance with Large Language Models
- URL: http://arxiv.org/abs/2410.12577v1
- Date: Wed, 16 Oct 2024 13:55:34 GMT
- Title: On the Utility of Domain Modeling Assistance with Large Language Models
- Authors: Meriem Ben Chaaben, Lola BurgueƱo, Istvan David, Houari Sahraoui,
- Abstract summary: This paper presents a study to evaluate the usefulness of a novel approach utilizing large language models (LLMs) and few-shot prompt learning to assist in domain modeling.
The aim of this approach is to overcome the need for extensive training of AI-based completion models on scarce domain-specific datasets.
- Score: 2.874893537471256
- License:
- Abstract: Model-driven engineering (MDE) simplifies software development through abstraction, yet challenges such as time constraints, incomplete domain understanding, and adherence to syntactic constraints hinder the design process. This paper presents a study to evaluate the usefulness of a novel approach utilizing large language models (LLMs) and few-shot prompt learning to assist in domain modeling. The aim of this approach is to overcome the need for extensive training of AI-based completion models on scarce domain-specific datasets and to offer versatile support for various modeling activities, providing valuable recommendations to software modelers. To support this approach, we developed MAGDA, a user-friendly tool, through which we conduct a user study and assess the real-world applicability of our approach in the context of domain modeling, offering valuable insights into its usability and effectiveness.
Related papers
- Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach [1.8874331450711404]
We propose a conceptual framework that combines modeling event logs, intelligent modeling assistants, and the generation of modeling operations.
In particular, the architecture comprises modeling components that help the designer specify the system, record its operation within a graphical modeling environment, and automatically recommend relevant operations.
arXiv Detail & Related papers (2024-08-26T13:26:44Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks.
New paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning.
Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems.
arXiv Detail & Related papers (2023-03-07T18:44:07Z) - Towards using Few-Shot Prompt Learning for Automating Model Completion [0.0]
We propose a simple yet a novel approach to improve completion in domain modeling activities.
Our approach exploits the power of large language models by using few-shot prompt learning without the need to train or fine-tune those models.
arXiv Detail & Related papers (2022-12-07T02:11:26Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
This paper compares the use of MDD and ABMS platforms in terms of effort and developer mistakes.
The obtained results show that MDD4ABMS requires less effort to develop simulations with similar (sometimes better) design quality than NetLogo.
arXiv Detail & Related papers (2020-06-15T23:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.