Logical Lease Litigation: Prolog and LLMs for Rental Law Compliance in New York
- URL: http://arxiv.org/abs/2502.09204v1
- Date: Thu, 13 Feb 2025 11:45:38 GMT
- Title: Logical Lease Litigation: Prolog and LLMs for Rental Law Compliance in New York
- Authors: Sanskar Sehgal, Yanhong A. Liu,
- Abstract summary: This paper presents a novel approach and system, LogicLease, to automate the analysis of landlord-tenant legal cases in the state of New York.
LogicLease determines compliance with relevant legal requirements by analyzing case descriptions and citing all relevant laws.
We evaluate the accuracy, efficiency, and robustness of LogicLease through a series of tests, achieving 100% accuracy and an average processing time of 2.57 seconds.
- Score: 0.30693357740321775
- License:
- Abstract: Legal cases require careful logical reasoning following the laws, whereas interactions with non- technical users must be in natural language. As an application combining logical reasoning using Prolog and natural language processing using large language models (LLMs), this paper presents a novel approach and system, LogicLease, to automate the analysis of landlord-tenant legal cases in the state of New York. LogicLease determines compliance with relevant legal requirements by analyzing case descriptions and citing all relevant laws. It leverages LLMs for information extraction and Prolog for legal reasoning. By separating information extraction from legal reasoning, LogicLease achieves greater transparency and control over the legal logic applied to each case. We evaluate the accuracy, efficiency, and robustness of LogicLease through a series of tests, achieving 100% accuracy and an average processing time of 2.57 seconds. LogicLease presents advantages over state-of-the-art LLM- based legal analysis systems by providing clear, step-by-step reasoning, citing specific laws, and distinguishing itself by its ability to avoid hallucinations - a common issue in LLMs.
Related papers
- Logical Consistency of Large Language Models in Fact-checking [6.286017217366497]
Large language models (LLMs) have demonstrated significant success in performing varied natural language tasks.
Despite their impressive ability to generate human-like texts, LLMs are infamous for their inconsistent responses.
arXiv Detail & Related papers (2024-12-20T17:42:25Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Logic Rules as Explanations for Legal Case Retrieval [9.240902132139187]
We propose a framework that conducts reasoning on the matching of legal cases through learning case-level and law-level logic rules.
Benefiting from the logic and interpretable nature of the logic rules, NS-LCR is equipped with built-in faithful explainability.
arXiv Detail & Related papers (2024-03-03T09:22:21Z) - Do Large Language Models Understand Logic or Just Mimick Context? [14.081178100662163]
This paper investigates the reasoning capabilities of large language models (LLMs) on two logical reasoning datasets.
It is found that LLMs do not truly understand logical rules; rather, in-context learning has simply enhanced the likelihood of these models arriving at the correct answers.
arXiv Detail & Related papers (2024-02-19T12:12:35Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
Two lines of approaches are adopted for complex reasoning with LLMs.
One line of work prompts LLMs with various reasoning structures, while the structural outputs can be naturally regarded as intermediate reasoning steps.
The other line of work adopt LLM-free declarative solvers to do the reasoning task, rendering higher reasoning accuracy but lacking interpretability due to the black-box nature of the solvers.
We present a simple extension to the latter line of work. Specifically, we showcase that the intermediate search logs generated by Prolog interpreters can be accessed and interpreted into human-readable reasoning.
arXiv Detail & Related papers (2023-11-16T11:26:21Z) - Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning [101.26814728062065]
Large Language Models (LLMs) have shown human-like reasoning abilities but still struggle with complex logical problems.
This paper introduces a novel framework, Logic-LM, which integrates LLMs with symbolic solvers to improve logical problem-solving.
arXiv Detail & Related papers (2023-05-20T22:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.