Visual Graph Question Answering with ASP and LLMs for Language Parsing
- URL: http://arxiv.org/abs/2502.09211v1
- Date: Thu, 13 Feb 2025 11:47:59 GMT
- Title: Visual Graph Question Answering with ASP and LLMs for Language Parsing
- Authors: Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera Ruiz, Johannes Oetsch,
- Abstract summary: We address the problem of how to integrate ASP with modules for vision and natural language processing to solve a new and demanding VQA variant.
Our modular neuro-symbolic approach combines optical graph recognition for graph parsing, a pretrained optical character recognition neural network for parsing labels, Large Language Models (LLMs) for language processing, and ASP for reasoning.
- Score: 10.012129232671635
- License:
- Abstract: Visual Question Answering (VQA) is a challenging problem that requires to process multimodal input. Answer-Set Programming (ASP) has shown great potential in this regard to add interpretability and explainability to modular VQA architectures. In this work, we address the problem of how to integrate ASP with modules for vision and natural language processing to solve a new and demanding VQA variant that is concerned with images of graphs (not graphs in symbolic form). Images containing graph-based structures are an ubiquitous and popular form of visualisation. Here, we deal with the particular problem of graphs inspired by transit networks, and we introduce a novel dataset that amends an existing one by adding images of graphs that resemble metro lines. Our modular neuro-symbolic approach combines optical graph recognition for graph parsing, a pretrained optical character recognition neural network for parsing labels, Large Language Models (LLMs) for language processing, and ASP for reasoning. This method serves as a first baseline and achieves an overall average accuracy of 73% on the dataset. Our evaluation provides further evidence of the potential of modular neuro-symbolic systems, in particular with pretrained models that do not involve any further training and logic programming for reasoning, to solve complex VQA tasks.
Related papers
- VProChart: Answering Chart Question through Visual Perception Alignment Agent and Programmatic Solution Reasoning [13.011899331656018]
VProChart is a novel framework designed to address the challenges of Chart Question Answering (CQA)
It integrates a lightweight Visual Perception Alignment Agent (VPAgent) and a Programmatic Solution Reasoning approach.
VProChart significantly outperforms existing methods, highlighting its capability in understanding and reasoning with charts.
arXiv Detail & Related papers (2024-09-03T07:19:49Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - Which Modality should I use -- Text, Motif, or Image? : Understanding Graphs with Large Language Models [14.251972223585765]
This paper introduces a new approach to encoding a graph with diverse modalities, such as text, image, and motif, and prompts to approximate a graph's global connectivity.
The study also presents GraphTMI, a novel benchmark for evaluating Large Language Models (LLMs) in graph structure analysis.
arXiv Detail & Related papers (2023-11-16T12:45:41Z) - GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language
Models [33.56759621666477]
We present a benchmark dataset for evaluating the integration of graph knowledge into language models.
The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation.
We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.
arXiv Detail & Related papers (2023-10-12T16:46:58Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning.
We introduce the concept of Neural Graph Database (NGDBs)
NGDB consists of a Neural Graph Storage and a Neural Graph Engine.
arXiv Detail & Related papers (2023-03-26T04:03:37Z) - GraphQ IR: Unifying Semantic Parsing of Graph Query Language with
Intermediate Representation [91.27083732371453]
We propose a unified intermediate representation (IR) for graph query languages, namely GraphQ IR.
With the IR's natural-language-like representation that bridges the semantic gap and its formally defined syntax that maintains the graph structure, neural semantic parsing can more effectively convert user queries into GraphQ IR.
Our approach can consistently achieve state-of-the-art performance on KQA Pro, Overnight and MetaQA.
arXiv Detail & Related papers (2022-05-24T13:59:53Z) - Bilateral Cross-Modality Graph Matching Attention for Feature Fusion in
Visual Question Answering [71.6781118080461]
We propose a Graph Matching Attention (GMA) network for Visual Question Answering (VQA) task.
firstly, it builds graph for the image, but also constructs graph for the question in terms of both syntactic and embedding information.
Next, we explore the intra-modality relationships by a dual-stage graph encoder and then present a bilateral cross-modality graph matching attention to infer the relationships between the image and the question.
Experiments demonstrate that our network achieves state-of-the-art performance on the GQA dataset and the VQA 2.0 dataset.
arXiv Detail & Related papers (2021-12-14T10:01:26Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Analysis on Image Set Visual Question Answering [0.3359875577705538]
We tackle the challenge of Visual Question Answering in multi-image setting.
Traditional VQA tasks have focused on a single-image setting where the target answer is generated from a single image.
In this report, we work with 4 approaches in a bid to improve the performance on the task.
arXiv Detail & Related papers (2021-03-31T20:47:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.