Neuro-Symbolic Contrastive Learning for Cross-domain Inference
- URL: http://arxiv.org/abs/2502.09213v1
- Date: Thu, 13 Feb 2025 11:48:46 GMT
- Title: Neuro-Symbolic Contrastive Learning for Cross-domain Inference
- Authors: Mingyue Liu, Ryo Ueda, Zhen Wan, Katsumi Inoue, Chris G. Willcocks,
- Abstract summary: inductive logic programming (ILP) excels at inferring logical relationships across diverse, sparse and limited datasets.
This paper proposes a bridge between the two approaches: neuro-symbolic contrastive learning.
- Score: 13.649270716741535
- License:
- Abstract: Pre-trained language models (PLMs) have made significant advances in natural language inference (NLI) tasks, however their sensitivity to textual perturbations and dependence on large datasets indicate an over-reliance on shallow heuristics. In contrast, inductive logic programming (ILP) excels at inferring logical relationships across diverse, sparse and limited datasets, but its discrete nature requires the inputs to be precisely specified, which limits their application. This paper proposes a bridge between the two approaches: neuro-symbolic contrastive learning. This allows for smooth and differentiable optimisation that improves logical accuracy across an otherwise discrete, noisy, and sparse topological space of logical functions. We show that abstract logical relationships can be effectively embedded within a neuro-symbolic paradigm, by representing data as logic programs and sets of logic rules. The embedding space captures highly varied textual information with similar semantic logical relations, but can also separate similar textual relations that have dissimilar logical relations. Experimental results demonstrate that our approach significantly improves the inference capabilities of the models in terms of generalisation and reasoning.
Related papers
- Three Pathways to Neurosymbolic Reinforcement Learning with
Interpretable Model and Policy Networks [4.242435932138821]
We study a class of neural networks that build interpretable semantics directly into their architecture.
We reveal and highlight both the potential and the essential difficulties of combining logic, simulation, and learning.
arXiv Detail & Related papers (2024-02-07T23:00:24Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
Passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence)
We propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs)
The networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features.
arXiv Detail & Related papers (2022-07-04T14:38:49Z) - LogiGAN: Learning Logical Reasoning via Adversarial Pre-training [58.11043285534766]
We present LogiGAN, an unsupervised adversarial pre-training framework for improving logical reasoning abilities of language models.
Inspired by the facilitation effect of reflective thinking in human learning, we simulate the learning-thinking process with an adversarial Generator-Verifier architecture.
Both base and large size language models pre-trained with LogiGAN demonstrate obvious performance improvement on 12 datasets.
arXiv Detail & Related papers (2022-05-18T08:46:49Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
We propose learning rules with the recently proposed logical neural networks (LNN)
Compared to others, LNNs offer strong connection to classical Boolean logic.
Our experiments on standard benchmarking tasks confirm that LNN rules are highly interpretable.
arXiv Detail & Related papers (2021-12-06T19:38:30Z) - Logical Neural Networks [51.46602187496816]
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning)
Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation.
Inference is omni rather than focused on predefined target variables, and corresponds to logical reasoning.
arXiv Detail & Related papers (2020-06-23T16:55:45Z) - Neural Collaborative Reasoning [31.03627817834551]
We propose Collaborative Filtering (CF) to Collaborative Reasoning (CR)
CR means that each user knows part of the reasoning space, and they collaborate for reasoning in the space to estimate preferences for each other.
We integrate the power of representation learning and logical reasoning, where representations capture similarity patterns in data from perceptual perspectives.
arXiv Detail & Related papers (2020-05-16T23:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.