論文の概要: Data2Concept2Text: An Explainable Multilingual Framework for Data Analysis Narration
- arxiv url: http://arxiv.org/abs/2502.09218v1
- Date: Thu, 13 Feb 2025 11:49:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:44:55.264700
- Title: Data2Concept2Text: An Explainable Multilingual Framework for Data Analysis Narration
- Title(参考訳): Data2Concept2Text: データ分析ナレーションのための説明可能な多言語フレームワーク
- Authors: Flavio Bertini, Alessandro Dal Palù, Federica Zaglio, Francesco Fabiano, Andrea Formisano,
- Abstract要約: 本稿では,データの集合を解釈し,基礎となる特徴を抽象化し,それを自然言語で記述する,完全な説明可能なシステムを提案する。
このシステムは、2つの重要な段階に依存している: (i)データから出現する特性を識別し、それらを抽象概念に変換する、(ii)これらの概念を自然言語に変換する。
- 参考スコア(独自算出の注目度): 42.95840730800478
- License:
- Abstract: This paper presents a complete explainable system that interprets a set of data, abstracts the underlying features and describes them in a natural language of choice. The system relies on two crucial stages: (i) identifying emerging properties from data and transforming them into abstract concepts, and (ii) converting these concepts into natural language. Despite the impressive natural language generation capabilities demonstrated by Large Language Models, their statistical nature and the intricacy of their internal mechanism still force us to employ these techniques as black boxes, forgoing trustworthiness. Developing an explainable pipeline for data interpretation would allow facilitating its use in safety-critical environments like processing medical information and allowing non-experts and visually impaired people to access narrated information. To this end, we believe that the fields of knowledge representation and automated reasoning research could present a valid alternative. Expanding on prior research that tackled the first stage (i), we focus on the second stage, named Concept2Text. Being explainable, data translation is easily modeled through logic-based rules, once again emphasizing the role of declarative programming in achieving AI explainability. This paper explores a Prolog/CLP-based rewriting system to interpret concepts-articulated in terms of classes and relations, plus common knowledge-derived from a generic ontology, generating natural language text. Its main features include hierarchical tree rewritings, modular multilingual generation, support for equivalent variants across semantic, grammar, and lexical levels, and a transparent rule-based system. We outline the architecture and demonstrate its flexibility through some examples capable of generating numerous diverse and equivalent rewritings based on the input concept.
- Abstract(参考訳): 本稿では,データの集合を解釈し,基礎となる特徴を抽象化し,それを自然言語で記述する,完全な説明可能なシステムを提案する。
このシステムは2つの重要な段階に依存している。
i)データから出現する特性を識別し、それらを抽象概念に変換すること。
(二)これらの概念を自然言語に変換すること。
大規模言語モデルによって実証された印象的な自然言語生成能力にもかかわらず、その統計的性質と内部メカニズムの複雑さは、なおもこれらのテクニックをブラックボックスとして使わざるを得ず、信頼性を保ちます。
データ解釈のための説明可能なパイプラインを開発することで、医療情報処理や、非専門家や視覚障害者がナレーション付き情報にアクセスできないような、安全クリティカルな環境での使用が容易になる。
この目的のために、知識表現と自動推論研究の分野が有効な選択肢となると信じている。
第一段階に取り組む先行研究の拡大
(i)Concept2Textという第2ステージに注力します。
説明可能なデータ翻訳は、論理ベースのルールを通じて容易にモデル化され、AIの説明可能性を達成する上での宣言型プログラミングの役割を再び強調する。
本稿では,概念をクラスや関係の観点から解釈するProlog/CLPベースの書き換えシステムについて検討する。
その主な特徴は、階層的なツリー書き換え、モジュール型多言語生成、意味論、文法、語彙レベルにまたがる等価な変種のサポート、透過的なルールベースのシステムである。
アーキテクチャの概要を概説し、入力概念に基づいた多種多様な等価な書き換えを生成できるいくつかの例を通して、その柔軟性を実証する。
関連論文リスト
- Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language
Pretraining? [34.609984453754656]
本研究の目的は,意味表現や構文構造を含む包括的言語知識がマルチモーダルアライメントに与える影響を明らかにすることである。
具体的には、最初の大規模マルチモーダルアライメント探索ベンチマークであるSNAREを設計、リリースする。
論文 参考訳(メタデータ) (2023-08-24T16:17:40Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - data2vec: A General Framework for Self-supervised Learning in Speech,
Vision and Language [85.9019051663368]
data2vecは、音声、NLP、コンピュータビジョンのいずれかに同じ学習方法を使用するフレームワークである。
中心となる考え方は、自己蒸留装置における入力のマスキングビューに基づいて、完全な入力データの潜在表現を予測することである。
音声認識、画像分類、自然言語理解に関する主要なベンチマークの実験は、新しい技術や競争性能の状態を実証している。
論文 参考訳(メタデータ) (2022-02-07T22:52:11Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - Probing Linguistic Information For Logical Inference In Pre-trained
Language Models [2.4366811507669124]
本稿では,事前学習した言語モデル表現における論理推論のための言語情報探索手法を提案する。
i)事前学習された言語モデルは、推論のためにいくつかの種類の言語情報を符号化するが、弱符号化された情報もいくつか存在する。
シンボリック推論支援のためのセマンティックおよび背景知識基盤としての言語モデルの可能性を実証した。
論文 参考訳(メタデータ) (2021-12-03T07:19:42Z) - A Hybrid Approach to Dependency Parsing: Combining Rules and Morphology
with Deep Learning [0.0]
本稿では,特に訓練データ量に制限のある言語に対して,依存関係解析の2つのアプローチを提案する。
第1のアプローチは、最先端のディープラーニングとルールベースのアプローチを組み合わせ、第2のアプローチは、形態情報をネットワークに組み込む。
提案手法はトルコ語向けに開発されたが、他の言語にも適用可能である。
論文 参考訳(メタデータ) (2020-02-24T08:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。