論文の概要: FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2502.09274v1
- Date: Thu, 13 Feb 2025 12:39:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:48:19.035675
- Title: FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation
- Title(参考訳): FLARES: 高速かつ高精度なLiDARマルチレンジセマンティックセマンティックセマンティックセグメンテーション
- Authors: Bin Yang, Alexandru Paul Condurache,
- Abstract要約: 3Dシーンの理解は、自動運転における重要な課題である。
近年の手法では、レンジビュー表現を利用して処理効率を向上している。
範囲ビューに基づくLiDARセマンティックセマンティックセグメンテーションのためのワークフローを再設計する。
- 参考スコア(独自算出の注目度): 52.89847760590189
- License:
- Abstract: 3D scene understanding is a critical yet challenging task in autonomous driving, primarily due to the irregularity and sparsity of LiDAR data, as well as the computational demands of processing large-scale point clouds. Recent methods leverage the range-view representation to improve processing efficiency. To mitigate the performance drop caused by information loss inherent to the "many-to-one" problem, where multiple nearby 3D points are mapped to the same 2D grids and only the closest is retained, prior works tend to choose a higher azimuth resolution for range-view projection. However, this can bring the drawback of reducing the proportion of pixels that carry information and heavier computation within the network. We argue that it is not the optimal solution and show that, in contrast, decreasing the resolution is more advantageous in both efficiency and accuracy. In this work, we present a comprehensive re-design of the workflow for range-view-based LiDAR semantic segmentation. Our approach addresses data representation, augmentation, and post-processing methods for improvements. Through extensive experiments on two public datasets, we demonstrate that our pipeline significantly enhances the performance of various network architectures over their baselines, paving the way for more effective LiDAR-based perception in autonomous systems.
- Abstract(参考訳): 3Dシーンの理解は、LiDARデータの不規則性や空間性、大規模ポイントクラウド処理の計算要求など、自動運転における重要な課題である。
近年の手法では、レンジビュー表現を利用して処理効率を向上している。
複数の近接する3次元点が同一の2次元格子にマッピングされ、最も近い点のみが保持される「多対一」問題に固有の情報損失による性能低下を軽減するため、事前の作業では、レンジビュー投影のためのより高い方位分解能を選択する傾向にある。
しかし、これは、情報を運ぶピクセルの割合を減らし、ネットワーク内でより重い計算を行うという欠点をもたらす可能性がある。
これは最適解ではなく、対照的に分解能の低下は効率と精度の両面でより有利であることを示す。
本研究では、範囲ビューに基づくLiDARセマンティックセマンティックセグメンテーションのためのワークフローを包括的に再設計する。
我々のアプローチは、改善のためのデータ表現、拡張、および後処理手法に対処する。
2つの公開データセットに関する広範な実験を通じて、我々のパイプラインはベースラインを越えて様々なネットワークアーキテクチャのパフォーマンスを大幅に向上させ、自律システムにおけるより効果的なLiDARベースの認識の道を開くことを実証した。
関連論文リスト
- LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeADは多用途でスケーラブルなフレームワークで、さまざまな現実世界の運転データセットにわたる大規模3D事前トレーニング用に設計されている。
我々のフレームワークは、VFMを利用して2次元画像から意味的にリッチなスーパーピクセルを抽出し、LiDAR点雲に整列して高品質なコントラストサンプルを生成する。
提案手法は,LDARに基づくセグメント化とオブジェクト検出の両面において,線形探索と微調整の両作業において,最先端の手法よりも大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2025-01-07T18:59:59Z) - OccLoff: Learning Optimized Feature Fusion for 3D Occupancy Prediction [5.285847977231642]
3Dセマンティック占有予測は、自動運転の安全性を確保するために不可欠である。
既存のフュージョンベースの占有法では、画像の特徴に対して2次元から3次元のビュー変換を行うのが一般的である。
OccLoffは3次元占有予測のためにFeature Fusionを最適化するフレームワークである。
論文 参考訳(メタデータ) (2024-11-06T06:34:27Z) - On Deep Learning for Geometric and Semantic Scene Understanding Using On-Vehicle 3D LiDAR [4.606106768645647]
3D LiDARポイントクラウドデータは、コンピュータビジョン、ロボティクス、自動運転におけるシーン認識に不可欠である。
我々は,パノラマ環境(近赤外)と反射率像を特徴とする,最初の高忠実度18チャネル3次元LiDARデータセットであるDurLARを提案する。
セグメンテーションの精度を向上させるために、Range-Aware Pointwise Distance Distribution (RAPiD) 機能と関連するRAPiD-Segアーキテクチャを導入する。
論文 参考訳(メタデータ) (2024-11-01T14:01:54Z) - Rethinking Range View Representation for LiDAR Segmentation [66.73116059734788]
「多対一」マッピング、意味的不整合、形状変形は、射程射影からの効果的な学習に対する障害となる可能性がある。
RangeFormerは、ネットワークアーキテクチャ、データ拡張、後処理を含む新しい設計を含む、フルサイクルのフレームワークである。
比較対象のLiDARセマンティックスとパノプティックスセグメンテーションのベンチマークにおいて,初めてレンジビュー法が点,ボクセル,マルチビューフュージョンを越えられることを示す。
論文 参考訳(メタデータ) (2023-03-09T16:13:27Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
MeshとPoint Cloudの単純化手法は、3Dモデルの複雑さを低減しつつ、視覚的品質と関連する健全な機能を維持することを目的としている。
そこで本研究では,正解点の標本化を学習し,高速点雲の簡易化手法を提案する。
提案手法は、入力空間から任意のユーザ定義の点数を選択し、視覚的知覚誤差を最小限に抑えるために、その位置を再配置するよう訓練されたグラフニューラルネットワークアーキテクチャに依存する。
論文 参考訳(メタデータ) (2021-09-30T10:23:55Z) - EfficientLPS: Efficient LiDAR Panoptic Segmentation [30.249379810530165]
我々は、LiDARポイントクラウドのセグメント化における複数の課題に対処する新しい効率的なLiDARパンオプティクスアーキテクチャを紹介します。
効率的なLPSは、拡張された幾何変換モデリング能力で符号化される新しい共有バックボーンからなる。
提案したモデルを2つの大規模LiDARデータセットでベンチマークする。
論文 参考訳(メタデータ) (2021-02-16T08:14:52Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
最先端の手法では、深いニューラルネットワークを使用して、LiDARスキャンの各点のセマンティッククラスを予測する。
LiDAR測定を処理するための強力で効率的な方法は、2次元の画像のような投影を使うことである。
メモリの制約だけでなく、パフォーマンスの向上やランタイムの改善など、さまざまなテクニックを実証する。
論文 参考訳(メタデータ) (2020-04-06T11:08:12Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。