The Multilingual Mind : A Survey of Multilingual Reasoning in Language Models
- URL: http://arxiv.org/abs/2502.09457v1
- Date: Thu, 13 Feb 2025 16:25:16 GMT
- Title: The Multilingual Mind : A Survey of Multilingual Reasoning in Language Models
- Authors: Akash Ghosh, Debayan Datta, Sriparna Saha, Chirag Agarwal,
- Abstract summary: Multilingual reasoning requires language models to handle logical reasoning across languages.
This survey provides the first in-depth review of multilingual reasoning in Language Models.
- Score: 18.399229357408043
- License:
- Abstract: While reasoning and multilingual capabilities in Language Models (LMs) have achieved remarkable progress in recent years, their integration into a unified paradigm, multilingual reasoning, is at a nascent stage. Multilingual reasoning requires language models to handle logical reasoning across languages while addressing misalignment, biases, and challenges in low-resource settings. This survey provides the first in-depth review of multilingual reasoning in LMs. In this survey, we provide a systematic overview of existing methods that leverage LMs for multilingual reasoning, specifically outlining the challenges, motivations, and foundational aspects of applying language models to reason across diverse languages. We provide an overview of the standard data resources used for training multilingual reasoning in LMs and the evaluation benchmarks employed to assess their multilingual capabilities. Next, we analyze various state-of-the-art methods and their performance on these benchmarks. Finally, we explore future research opportunities to improve multilingual reasoning in LMs, focusing on enhancing their ability to handle diverse languages and complex reasoning tasks.
Related papers
- Demystifying Multilingual Chain-of-Thought in Process Reward Modeling [71.12193680015622]
We tackle the challenge of extending process reward models (PRMs) to multilingual settings.
We train multilingual PRMs on a dataset spanning seven languages, which is translated from English.
Our results highlight the sensitivity of multilingual PRMs to both the number of training languages and the volume of English data.
arXiv Detail & Related papers (2025-02-18T09:11:44Z) - How does a Multilingual LM Handle Multiple Languages? [0.0]
This study critically examines capabilities in multilingual understanding, semantic representation, and cross-lingual knowledge transfer.
It assesses semantic similarity by analyzing multilingual word embeddings for consistency using cosine similarity.
It examines BLOOM-1.7B and Qwen2 through Named Entity Recognition and sentence similarity tasks to understand their linguistic structures.
arXiv Detail & Related papers (2025-02-06T18:08:14Z) - LinguaLIFT: An Effective Two-stage Instruction Tuning Framework for Low-Resource Language Reasoning [28.288949710191158]
Large language models (LLMs) have exhibited impressive multilingual reasoning capabilities, driven by extensive multilingual pre-training corpora and instruction fine-tuning data.
A performance gap exists between high- and low-resource language reasoning tasks due to the language imbalance in the pre-training corpus.
We propose LinguaLIFT, a two-stage instruction tuning framework for advancing low-resource language reasoning.
arXiv Detail & Related papers (2024-12-17T03:03:17Z) - Benchmarking Linguistic Diversity of Large Language Models [14.824871604671467]
This paper emphasizes the importance of examining the preservation of human linguistic richness by language models.
We propose a comprehensive framework for evaluating LLMs from various linguistic diversity perspectives.
arXiv Detail & Related papers (2024-12-13T16:46:03Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers [81.47046536073682]
We present a review and provide a unified perspective to summarize the recent progress as well as emerging trends in multilingual large language models (MLLMs) literature.
We hope our work can provide the community with quick access and spur breakthrough research in MLLMs.
arXiv Detail & Related papers (2024-04-07T11:52:44Z) - A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias [5.096332588720052]
We present an overview of MLLMs, covering their evolutions, key techniques, and multilingual capacities.
Thirdly, we survey the state-of-the-art studies of multilingual representations and investigate whether the current MLLMs can learn a universal language representation.
Fourthly, we discuss bias on MLLMs, including its categories, evaluation metrics, and debiasing techniques.
arXiv Detail & Related papers (2024-04-01T05:13:56Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - Cross-lingual Lifelong Learning [53.06904052325966]
We present a principled Cross-lingual Continual Learning (CCL) evaluation paradigm.
We provide insights into what makes multilingual sequential learning particularly challenging.
The implications of this analysis include a recipe for how to measure and balance different cross-lingual continual learning desiderata.
arXiv Detail & Related papers (2022-05-23T09:25:43Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
Cross-lingual TRansfer Evaluation of Multilinguals XTREME is a benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks.
We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models.
arXiv Detail & Related papers (2020-03-24T19:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.