Crosslingual Reasoning through Test-Time Scaling
- URL: http://arxiv.org/abs/2505.05408v1
- Date: Thu, 08 May 2025 16:50:06 GMT
- Title: Crosslingual Reasoning through Test-Time Scaling
- Authors: Zheng-Xin Yong, M. Farid Adilazuarda, Jonibek Mansurov, Ruochen Zhang, Niklas Muennighoff, Carsten Eickhoff, Genta Indra Winata, Julia Kreutzer, Stephen H. Bach, Alham Fikri Aji,
- Abstract summary: We find that scaling up inference compute for English-centric reasoning language models (RLMs) improves multilingual mathematical reasoning across many languages.<n>While English-centric RLM's CoTs are naturally predominantly English, they consistently follow a quote-and-think pattern to reason about quoted non-English inputs.<n>We observe poor out-of-domain reasoning generalization, in particular from STEM to cultural commonsense knowledge, even for English.
- Score: 51.55526326294275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning capabilities of large language models are primarily studied for English, even when pretrained models are multilingual. In this work, we investigate to what extent English reasoning finetuning with long chain-of-thoughts (CoTs) can generalize across languages. First, we find that scaling up inference compute for English-centric reasoning language models (RLMs) improves multilingual mathematical reasoning across many languages including low-resource languages, to an extent where they outperform models twice their size. Second, we reveal that while English-centric RLM's CoTs are naturally predominantly English, they consistently follow a quote-and-think pattern to reason about quoted non-English inputs. Third, we discover an effective strategy to control the language of long CoT reasoning, and we observe that models reason better and more efficiently in high-resource languages. Finally, we observe poor out-of-domain reasoning generalization, in particular from STEM to cultural commonsense knowledge, even for English. Overall, we demonstrate the potentials, study the mechanisms and outline the limitations of crosslingual generalization of English reasoning test-time scaling. We conclude that practitioners should let English-centric RLMs reason in high-resource languages, while further work is needed to improve reasoning in low-resource languages and out-of-domain contexts.
Related papers
- MultiNRC: A Challenging and Native Multilingual Reasoning Evaluation Benchmark for LLMs [56.87573414161703]
We introduce the Multilingual Native Reasoning Challenge (MultiNRC), a benchmark to assess Large Language Models (LLMs)<n>MultiNRC covers four core reasoning categories: language-specific linguistic reasoning, wordplay & riddles, cultural/tradition reasoning, and math reasoning with cultural relevance.<n>For cultural/tradition reasoning and math reasoning with cultural relevance, we also provide English equivalent translations of the multilingual questions by manual translation from native speakers fluent in English.
arXiv Detail & Related papers (2025-07-23T12:56:31Z) - Learn Globally, Speak Locally: Bridging the Gaps in Multilingual Reasoning [38.52080213211765]
We introduce GeoFact-X, a geography-based multilingual factual reasoning benchmark with annotated reasoning traces in five languages.<n>We propose BRIDGE, a novel training method that guides supervised fine-tuning and test-time reinforcement learning.<n>Our results show that BRIDGE significantly enhances multilingual reasoning fidelity.
arXiv Detail & Related papers (2025-07-07T19:04:36Z) - Cross-lingual Collapse: How Language-Centric Foundation Models Shape Reasoning in Large Language Models [44.94287386776289]
We identify textbfCross-lingual Collapse, a systematic drift in which a multilingual language model reverts to its dominant pre-training language.<n>Our experiments reveal three key findings: (i) GRPO rapidly amplifies pre-training language imbalances, leading to the erosion of low-resource languages within just a few hundred updates; (ii) language consistency reward mitigates this drift but does so at the expense of an almost 5 - 10 pp drop in accuracy.
arXiv Detail & Related papers (2025-06-06T08:08:48Z) - MMATH: A Multilingual Benchmark for Mathematical Reasoning [94.05289799605957]
We introduce MMATH, a benchmark for multilingual complex reasoning spanning 374 high-quality math problems across 10 typologically diverse languages.<n>We observe that even advanced models like DeepSeek R1 exhibit substantial performance disparities across languages and suffer from a critical off-target issue-generating responses in unintended languages.<n>Our findings offer new insights and practical strategies for advancing the multilingual reasoning capabilities of large language models.
arXiv Detail & Related papers (2025-05-25T12:47:39Z) - Language Matters: How Do Multilingual Input and Reasoning Paths Affect Large Reasoning Models? [59.970391602080205]
Despite multilingual training, LRMs tend to default to reasoning in high-resource languages at test time.<n>Cultural reasoning degrades performance on reasoning tasks but benefits cultural tasks, while safety evaluations exhibit language-specific behavior.
arXiv Detail & Related papers (2025-05-23T02:46:18Z) - When Less Language is More: Language-Reasoning Disentanglement Makes LLMs Better Multilingual Reasoners [111.50503126693444]
We show that language-specific ablation consistently boosts multilingual reasoning performance.<n>Compared to post-training, our training-free ablation achieves comparable or superior results with minimal computational overhead.
arXiv Detail & Related papers (2025-05-21T08:35:05Z) - On the Thinking-Language Modeling Gap in Large Language Models [68.83670974539108]
We show that there is a significant gap between the modeling of languages and thoughts.<n>We propose a new prompt technique termed Language-of-Thoughts (LoT) to demonstrate and alleviate this gap.
arXiv Detail & Related papers (2025-05-19T09:31:52Z) - Could Thinking Multilingually Empower LLM Reasoning? [41.62726542483646]
We explore the upper bound of harnessing multilingualism in reasoning tasks.<n>We find that multilingual reasoning promises significantly (by nearly 10 Acc@$k$ points) and robustly (tolerance for variations in translation quality and language choice) higher upper bounds than English-only reasoning.
arXiv Detail & Related papers (2025-04-16T07:45:10Z) - Scaling Test-time Compute for Low-resource Languages: Multilingual Reasoning in LLMs [3.9530780161144667]
We investigate the multilingual mechanism by which Large Language Models internally operate in a latent space biased toward their inherently dominant language.<n>We train models to generate the chain-of-thought (CoT) in English while outputting the final response in the target language, given input in the low-resource language.<n>Our experiments demonstrate that this approach, named English-Pivoted CoT Training, outperforms other baselines, with up to 28.33% improvement.
arXiv Detail & Related papers (2025-04-02T16:58:36Z) - Assessing Large Language Models in Agentic Multilingual National Bias [31.67058518564021]
Cross-language disparities in reasoning-based recommendations remain largely unexplored.<n>This study is the first to address this gap.<n>We investigate multilingual bias in state-of-the-art LLMs by analyzing their responses to decision-making tasks across multiple languages.
arXiv Detail & Related papers (2025-02-25T08:07:42Z) - Can Language Models Learn Typologically Implausible Languages? [62.823015163987996]
Grammatical features across human languages show intriguing correlations often attributed to learning biases in humans.<n>We discuss how language models (LMs) allow us to better determine the role of domain-general learning biases in language universals.<n>We test LMs on an array of highly naturalistic but counterfactual versions of the English (head-initial) and Japanese (head-final) languages.
arXiv Detail & Related papers (2025-02-17T20:40:01Z) - The Multilingual Mind : A Survey of Multilingual Reasoning in Language Models [18.399229357408043]
Multilingual reasoning requires language models to handle logical reasoning across languages.<n>This survey provides the first in-depth review of multilingual reasoning in Language Models.
arXiv Detail & Related papers (2025-02-13T16:25:16Z) - Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
We present a novel and simple yet effective method called textbfDictionary textbfInsertion textbfPrompting (textbfDIP)
When providing a non-English prompt, DIP looks up a word dictionary and inserts words' English counterparts into the prompt for LLMs.
It then enables better translation into English and better English model thinking steps which leads to obviously better results.
arXiv Detail & Related papers (2024-11-02T05:10:50Z) - How Do Multilingual Language Models Remember Facts? [50.13632788453612]
We show that previously identified recall mechanisms in English largely apply to multilingual contexts.<n>We localize the role of language during recall, finding that subject enrichment is language-independent.<n>In decoder-only LLMs, FVs compose these two pieces of information in two separate stages.
arXiv Detail & Related papers (2024-10-18T11:39:34Z) - mCoT: Multilingual Instruction Tuning for Reasoning Consistency in Language Models [21.616940026409818]
Large language models (LLMs) with Chain-of-thought (CoT) have recently emerged as a powerful technique for eliciting reasoning to improve downstream tasks.
We study multilingual reasoning consistency across multiple languages, using popular open-source LLMs.
We introduce multilingual CoT instruction tuning to boost reasoning capability across languages, thereby improving model consistency.
arXiv Detail & Related papers (2024-06-04T13:30:45Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
Large language models (LLMs) have demonstrated multilingual capabilities, yet they are mostly English-centric due to imbalanced training corpora.<n>We extend the evaluation to real-world user queries and non-English-centric LLMs, offering a broader examination of multilingual performance.
arXiv Detail & Related papers (2024-03-15T12:47:39Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.