論文の概要: Communicating Likelihoods with Normalising Flows
- arxiv url: http://arxiv.org/abs/2502.09494v1
- Date: Thu, 13 Feb 2025 17:00:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:10.991499
- Title: Communicating Likelihoods with Normalising Flows
- Title(参考訳): 正規化フローによるコミュニケーションの類型化
- Authors: Jack Y. Araz, Anja Beck, Méril Reboud, Michael Spannowsky, Danny van Dyk,
- Abstract要約: サンプルから未結合の確率をモデル化するための機械学習ベースのワークフローを提案する。
既存のアプローチに対する重要な進歩は、関節分布の厳密な統計的テストを用いた学習可能性の検証である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present a machine-learning-based workflow to model an unbinned likelihood from its samples. A key advancement over existing approaches is the validation of the learned likelihood using rigorous statistical tests of the joint distribution, such as the Kolmogorov-Smirnov test of the joint distribution. Our method enables the reliable communication of experimental and phenomenological likelihoods for subsequent analyses. We demonstrate its effectiveness through three case studies in high-energy physics. To support broader adoption, we provide an open-source reference implementation, nabu.
- Abstract(参考訳): サンプルから未結合の確率をモデル化するための機械学習ベースのワークフローを提案する。
既存のアプローチに対する重要な進歩は、関節分布の厳密な統計テスト(例えば、関節分布のコルモゴロフ・スミルノフ検定)を用いた学習可能性の検証である。
本手法により, 実験的および現象学的可能性の信頼性の高い通信が可能となる。
高エネルギー物理学における3つのケーススタディを通してその効果を実証する。
より広範な採用をサポートするため、オープンソースのリファレンス実装であるnabuを提供しています。
関連論文リスト
- Generative Modeling with Bayesian Sample Inference [50.07758840675341]
我々はガウス的後代推論の単純な作用から新しい生成モデルを導出する。
生成したサンプルを未知変数として推論することで、ベイズ確率の言語でサンプリングプロセスを定式化する。
我々のモデルは、未知のサンプルを広い初期信念から絞り込むために、一連の予測と後続の更新ステップを使用する。
論文 参考訳(メタデータ) (2025-02-11T14:27:10Z) - Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
本稿では, 抽出可能かつ効率的な対実表現推定のための重要サンプリング手法を提案する。
対物推定器の共通上限を最小化することにより、分散最小化問題を条件分布学習問題に変換する。
構造因果モデル (Structure Causal Models, SCM) の様々なタイプと設定による実験による理論的結果の検証と, 対実推定タスクにおける性能の実証を行った。
論文 参考訳(メタデータ) (2024-10-17T03:08:28Z) - InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion [53.90516061351706]
両手インタラクションに先立って生成を学習する新しいフレームワークであるInterHandGenを提案する。
サンプリングにアンチペネティフィケーションと合成フリーガイダンスを組み合わせることで、プラウシブルな生成を可能にする。
本手法は, 妥当性と多様性の観点から, ベースライン生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-03-26T06:35:55Z) - Detecting Out-of-Distribution Samples via Conditional Distribution
Entropy with Optimal Transport [20.421338676377587]
トレーニングサンプルとテストインプットの両方から幾何情報を含む経験的確率分布は,OOD検出に極めて有用である。
最適輸送の枠組みの中では,OODサンプルであるテスト入力の不確かさを定量化するため,エントロピー(enmphconditional distribution entropy)と呼ばれる新しいスコア関数を提案する。
論文 参考訳(メタデータ) (2024-01-22T07:07:32Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
本稿では,OoD(Out-of-Distribution)予測のためのポータブル分布シフト変換アルゴリズムを提案する。
提案手法は,OoDアルゴリズムを広範囲に接続した場合に,一般的な性能向上をもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-14T08:00:49Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) は、ディープニューラルネットワークの堅牢性を高める効果的なアプローチである。
我々は、Contrastive Energy-based Models(CEM)と呼ばれる統合確率的枠組みを開発することにより、この現象をデミステレーションする。
本稿では,逆学習法とサンプリング法を開発するための原則的手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T05:33:34Z) - Neural Empirical Bayes: Source Distribution Estimation and its
Applications to Simulation-Based Inference [9.877509217895263]
ニューラルネットワークによる経験的ベイズ手法は,地中真理源分布を復元する。
また,コライダー物理の逆問題に対するニューラル経験ベイズの適用性を示す。
論文 参考訳(メタデータ) (2020-11-11T14:59:34Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z) - Video Prediction via Example Guidance [156.08546987158616]
ビデオ予測タスクでは、将来のコンテンツとダイナミクスのマルチモーダルな性質を捉えることが大きな課題である。
本研究では,有効な将来状態の予測を効果的に行うための,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:57:24Z) - Robust model training and generalisation with Studentising flows [22.757298187704745]
本稿では、ロバストな(特に耐性のある)統計からの洞察に基づいて、これらの手法をさらに改善する方法について論じる。
本稿では, ガウス分布の簡易なドロップイン置換として, 太い尾の潜伏分布を持つフローベースモデルを提案する。
いくつかの異なるデータセットの実験により、提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2020-06-11T16:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。