Interpretable Molecular Graph Generation via Monotonic Constraints
- URL: http://arxiv.org/abs/2203.00412v1
- Date: Mon, 28 Feb 2022 08:35:56 GMT
- Title: Interpretable Molecular Graph Generation via Monotonic Constraints
- Authors: Yuanqi Du and Xiaojie Guo and Amarda Shehu and Liang Zhao
- Abstract summary: Deep graph generative models treat molecule design as graph generation problems.
Existing models have many shortcomings, including poor interpretability and controllability toward desired molecular properties.
This paper proposes new methodologies for molecule generation with interpretable and deep controllable models.
- Score: 19.401468196146336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing molecules with specific properties is a long-lasting research
problem and is central to advancing crucial domains such as drug discovery and
material science. Recent advances in deep graph generative models treat
molecule design as graph generation problems which provide new opportunities
toward the breakthrough of this long-lasting problem. Existing models, however,
have many shortcomings, including poor interpretability and controllability
toward desired molecular properties. This paper focuses on new methodologies
for molecule generation with interpretable and controllable deep generative
models, by proposing new monotonically-regularized graph variational
autoencoders. The proposed models learn to represent the molecules with latent
variables and then learn the correspondence between them and molecule
properties parameterized by polynomial functions. To further improve the
intepretability and controllability of molecule generation towards desired
properties, we derive new objectives which further enforce monotonicity of the
relation between some latent variables and target molecule properties such as
toxicity and clogP. Extensive experimental evaluation demonstrates the
superiority of the proposed framework on accuracy, novelty, disentanglement,
and control towards desired molecular properties. The code is open-source at
https://anonymous.4open.science/r/MDVAE-FD2C.
Related papers
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
Chemical validity, interpretability of the generation process and flexibility to variable molecular sizes are among some of the remaining challenges for generative models in computational materials design.
We propose an autoregressive approach that decomposes molecular generation into a sequence of discrete and interpretable steps.
Our results show that the model can effectively bias the generation distribution according to the prompted multi-target objective.
arXiv Detail & Related papers (2024-11-10T22:00:55Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGen is a pre-trained molecular language model tailored specifically for molecule generation.
It internalizes structural and grammatical insights through the reconstruction of over 100 million molecular SELFIES.
Our chemical feedback paradigm steers the model away from molecular hallucinations, ensuring alignment between the model's estimated probabilities and real-world chemical preferences.
arXiv Detail & Related papers (2023-01-26T17:52:56Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
We present a SMILES Variational Auto-Encoder (VAE) augmented with topological data analysis (TDA) representations of molecules.
Our experiments show that this TDA augmentation enables a SMILES VAE to capture the complex relation between 3D geometry and electronic properties.
arXiv Detail & Related papers (2021-06-08T15:49:21Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
We develop a molecular generative model based on variational inference and graph theory in the small data regime.
The model's performance is evaluated by generating molecules with desired target properties.
arXiv Detail & Related papers (2020-09-29T09:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.