Theoretical Benefit and Limitation of Diffusion Language Model
- URL: http://arxiv.org/abs/2502.09622v1
- Date: Thu, 13 Feb 2025 18:59:47 GMT
- Title: Theoretical Benefit and Limitation of Diffusion Language Model
- Authors: Guhao Feng, Yihan Geng, Jian Guan, Wei Wu, Liwei Wang, Di He,
- Abstract summary: Diffusion language models have emerged as a promising approach for text generation.
We present a rigorous theoretical analysis of a widely used type of diffusion language model, the Masked Diffusion Model (MDM)
Our analysis establishes the first theoretical foundation for understanding the benefits and limitations of MDMs.
- Score: 47.579673047639126
- License:
- Abstract: Diffusion language models have emerged as a promising approach for text generation. One would naturally expect this method to be an efficient replacement for autoregressive models since multiple tokens can be sampled in parallel during each diffusion step. However, its efficiency-accuracy trade-off is not yet well understood. In this paper, we present a rigorous theoretical analysis of a widely used type of diffusion language model, the Masked Diffusion Model (MDM), and find that its effectiveness heavily depends on the target evaluation metric. Under mild conditions, we prove that when using perplexity as the metric, MDMs can achieve near-optimal perplexity in sampling steps regardless of sequence length, demonstrating that efficiency can be achieved without sacrificing performance. However, when using the sequence error rate--which is important for understanding the "correctness" of a sequence, such as a reasoning chain--we show that the required sampling steps must scale linearly with sequence length to obtain "correct" sequences, thereby eliminating MDM's efficiency advantage over autoregressive models. Our analysis establishes the first theoretical foundation for understanding the benefits and limitations of MDMs. All theoretical findings are supported by empirical studies.
Related papers
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling [47.82616476928464]
Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data.
We show that both training and sampling of MDMs are theoretically free from the time variable.
We identify, for the first time, an underlying numerical issue, even with the commonly used 32-bit floating-point precision.
arXiv Detail & Related papers (2024-09-04T17:48:19Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Towards a mathematical theory for consistency training in diffusion
models [17.632123036281957]
This paper takes a first step towards establishing theoretical underpinnings for consistency models.
We demonstrate that, in order to generate samples within $varepsilon$ proximity to the target in distribution, it suffices for the number of steps in consistency learning to exceed the order of $d5/2/varepsilon$, with the data dimension.
Our theory offers rigorous insights into the validity and efficacy of consistency models, illuminating their utility in downstream inference tasks.
arXiv Detail & Related papers (2024-02-12T17:07:02Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
In this work, we analyze a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain.
We show that recovering the latent Structural Causal Model (SCM) is unnecessary for estimating domain counterfactuals.
We also develop a theoretically grounded practical algorithm that simplifies the modeling process to generative model estimation.
arXiv Detail & Related papers (2023-06-20T04:19:06Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
We propose a novel barycenter formulation for reconstructing Diffusion history from A single SnapsHot (DASH)
We prove that estimation error of diffusion parameters is unavoidable due to NP-hardness of diffusion parameter estimation.
We also develop an effective solver named DIffusion hiTting Times with Optimal proposal (DITTO)
arXiv Detail & Related papers (2023-06-01T09:39:32Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.