論文の概要: k-LLMmeans: Summaries as Centroids for Interpretable and Scalable LLM-Based Text Clustering
- arxiv url: http://arxiv.org/abs/2502.09667v1
- Date: Wed, 12 Feb 2025 19:50:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:48:48.781423
- Title: k-LLMmeans: Summaries as Centroids for Interpretable and Scalable LLM-Based Text Clustering
- Title(参考訳): k-LLMmeans: 解釈可能でスケーラブルなLLMベースのテキストクラスタリングのためのCentroidsの要約
- Authors: Jairo Diaz-Rodriguez,
- Abstract要約: k-LLMmeansは,LLMを用いてテキスト要約をクラスタセンタロイドとして生成する,k-meansクラスタリングアルゴリズムの新たな改良である。
この修正は、より高い解釈性を提供しながら、k-平均の性質を保っている。
本稿では,シーケンシャルテキストストリームにおけるクラスタセントロイドの解釈可能性を示すケーススタディを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce k-LLMmeans, a novel modification of the k-means clustering algorithm that utilizes LLMs to generate textual summaries as cluster centroids, thereby capturing contextual and semantic nuances often lost when relying on purely numerical means of document embeddings. This modification preserves the properties of k-means while offering greater interpretability: the cluster centroid is represented by an LLM-generated summary, whose embedding guides cluster assignments. We also propose a mini-batch variant, enabling efficient online clustering for streaming text data and providing real-time interpretability of evolving cluster centroids. Through extensive simulations, we show that our methods outperform vanilla k-means on multiple metrics while incurring only modest LLM usage that does not scale with dataset size. Finally, We present a case study showcasing the interpretability of evolving cluster centroids in sequential text streams. As part of our evaluation, we compile a new dataset from StackExchange, offering a benchmark for text-stream clustering.
- Abstract(参考訳): 我々は、k-LLMmeansというk-meansクラスタリングアルゴリズムを改良し、LLMを用いてテキスト要約をクラスタセンタロイドとして生成し、文書埋め込みの純粋に数値的な手段に依存するときにしばしば失われる文脈的・意味的ニュアンスをキャプチャする。
この修正はk平均の性質を保ちながら解釈可能性を高め、クラスタセントロイドはLCM生成サマリーで表現され、埋め込みはクラスタ割り当てを導く。
また、テキストデータをストリーミングするための効率的なオンラインクラスタリングを可能にし、クラスタセンタロイドのリアルタイム解釈を可能にするミニバッチ版を提案する。
大規模なシミュレーションにより,本手法は,データセットサイズによらず,控えめなLCM使用率のみを生かしながら,複数の測定値においてバニラk平均よりも優れていることを示す。
最後に,シーケンシャルテキストストリームにおけるクラスタセントロイドの解釈可能性を示すケーススタディを提案する。
評価の一環として、StackExchangeから新しいデータセットをコンパイルし、テキストストリームクラスタリングのベンチマークを提供します。
関連論文リスト
- Information-Theoretic Generative Clustering of Documents [24.56214029342293]
文書の集合をクラスタリングするための生成クラスタリング(GC)を$mathrmX$で提示する。
大規模言語モデル(LLM)は確率分布を提供するため、2つの文書間の類似性を厳密に定義することができる。
我々はGCが最先端のパフォーマンスを達成し、従来のクラスタリング手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2024-12-18T06:21:21Z) - Text Clustering as Classification with LLMs [6.030435811868953]
本研究では,大規模言語モデル(LLM)の文脈内学習能力を効果的に活用する,テキストクラスタリングのための新しいフレームワークを提案する。
そこで本研究では,テキストクラスタリングをLLMによる分類タスクに変換することを提案する。
我々のフレームワークは、最先端のクラスタリング手法に匹敵する、あるいは優れた性能を達成できることが実験的に証明されている。
論文 参考訳(メタデータ) (2024-09-30T16:57:34Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Large Language Models Enable Few-Shot Clustering [88.06276828752553]
大規模言語モデルは、クエリ効率が良く、数発のセミ教師付きテキストクラスタリングを可能にするために、専門家のガイダンスを増幅できることを示す。
最初の2つのステージにLSMを組み込むことで、クラスタの品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-07-02T09:17:11Z) - CEIL: A General Classification-Enhanced Iterative Learning Framework for
Text Clustering [16.08402937918212]
短文クラスタリングのための新しい分類強化反復学習フレームワークを提案する。
各イテレーションにおいて、まず最初に言語モデルを採用して、初期テキスト表現を検索する。
厳密なデータフィルタリングと集約プロセスの後、クリーンなカテゴリラベルを持つサンプルが検索され、監督情報として機能する。
最後に、表現能力が改善された更新言語モデルを使用して、次のイテレーションでクラスタリングを強化する。
論文 参考訳(メタデータ) (2023-04-20T14:04:31Z) - A Proposition-Level Clustering Approach for Multi-Document Summarization [82.4616498914049]
クラスタリングアプローチを再検討し、より正確な情報アライメントの提案をグループ化します。
提案手法は,有意な命題を検出し,それらをパラフラスティックなクラスタに分類し,その命題を融合して各クラスタの代表文を生成する。
DUC 2004 とTAC 2011 データセットでは,従来の最先端 MDS 法よりも要約法が優れている。
論文 参考訳(メタデータ) (2021-12-16T10:34:22Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Event-Driven News Stream Clustering using Entity-Aware Contextual
Embeddings [14.225334321146779]
本稿では,非パラメトリックストリーミングk-meansアルゴリズムの変種であるオンラインニュースストリームクラスタリング手法を提案する。
我々のモデルはスパースと密集した文書表現の組み合わせを使用し、これらの複数の表現に沿って文書とクラスタの類似性を集約する。
事前学習したトランスフォーマモデルにおいて,適切な微調整目標と外部知識を用いることにより,文脈埋め込みの有効性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2021-01-26T19:58:30Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
ラベルなしデータセットのクラスタを識別する新しい手法であるLSD-Cを提案する。
本手法は,最近の半教師付き学習の実践からインスピレーションを得て,クラスタリングアルゴリズムと自己教師付き事前学習と強力なデータ拡張を組み合わせることを提案する。
CIFAR 10/100, STL 10, MNIST, および文書分類データセットReuters 10Kなど, 一般的な公開画像ベンチマークにおいて, 当社のアプローチが競合より大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-17T17:58:10Z) - Enhancement of Short Text Clustering by Iterative Classification [0.0]
反復分類は、外乱のないクラスターを得るために外乱除去を適用する。
クラスタ分布に基づいて非アウトレーヤを用いて分類アルゴリズムを訓練する。
これを何回か繰り返すことで、より改良されたテキストのクラスタリングが得られる。
論文 参考訳(メタデータ) (2020-01-31T02:12:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。