論文の概要: Mind What You Ask For: Emotional and Rational Faces of Persuasion by Large Language Models
- arxiv url: http://arxiv.org/abs/2502.09687v1
- Date: Thu, 13 Feb 2025 15:15:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:28.510852
- Title: Mind What You Ask For: Emotional and Rational Faces of Persuasion by Large Language Models
- Title(参考訳): 問うべきこと:大規模言語モデルによる説得の感情と合理的な顔
- Authors: Wiktoria Mieleszczenko-Kowszewicz, Beata Bajcar, Jolanta Babiak, Berenika Dyczek, Jakub Świstak, Przemysław Biecek,
- Abstract要約: 大規模言語モデル(LLM)は,回答の価値を説得する上で,ますます効果的になっています。
本研究は,12の異なる言語モデルで使用される反応の心理言語学的特徴について検討した。
LLMによる大量誤報のリスクを軽減できるかどうかを問う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Be careful what you ask for, you just might get it. This saying fits with the way large language models (LLMs) are trained, which, instead of being rewarded for correctness, are increasingly rewarded for pleasing the recipient. So, they are increasingly effective at persuading us that their answers are valuable. But what tricks do they use in this persuasion? In this study, we examine what are the psycholinguistic features of the responses used by twelve different language models. By grouping response content according to rational or emotional prompts and exploring social influence principles employed by LLMs, we ask whether and how we can mitigate the risks of LLM-driven mass misinformation. We position this study within the broader discourse on human-centred AI, emphasizing the need for interdisciplinary approaches to mitigate cognitive and societal risks posed by persuasive AI responses.
- Abstract(参考訳): 何を頼んでも気をつけてね。
このことは、大きな言語モデル(LLM)のトレーニング方法に適合する。
ですから彼らは,彼らの回答が価値がある,と私たちに説得する上で,ますます効果的になっています。
しかし、この説得でどのようなトリックが使えるのか?
本研究では,12の異なる言語モデルで使用される反応の心理言語学的特徴について検討した。
合理的・感情的なプロンプトに従って応答内容をグループ化し,LLMが採用する社会的影響原理を探求することにより,LLMによる大量誤報のリスクを軽減できるかどうかを問う。
我々は、この研究を、人間中心のAIに関する幅広い談話の中に位置づけ、説得的なAI反応によって引き起こされる認知と社会的リスクを軽減するための学際的アプローチの必要性を強調した。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Measuring and Improving Persuasiveness of Large Language Models [12.134372070736596]
本稿ではPersuasionBenchとPersuasionArenaを紹介し,生成モデルの説得性を自動測定する。
我々の発見は、モデル開発者と政策立案者の両方にとって重要な意味を持つ。
論文 参考訳(メタデータ) (2024-10-03T16:36:35Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
インタラクションの文脈的特徴が依存に与える影響について検討する。
文脈特性が人間の信頼行動に大きく影響していることが判明した。
これらの結果から,キャリブレーションと言語品質だけでは人間とLMの相互作用のリスクを評価するには不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-07-10T18:00:05Z) - Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language [41.052284715017606]
本研究では,Large Language Models (LLM) の説得的テキスト生成能力について検討する。
特定のドメインやタイプの説得に焦点を当てた先行研究とは対照的に、諸藩をまたいだ総合的研究を行う。
我々は、短いテキストのペア対からなる新しいデータセットPersuasive-Pairを構築し、LLMによって書き直され、説得言語を増幅または縮小する。
論文 参考訳(メタデータ) (2024-06-25T17:40:47Z) - Large Language Models are as persuasive as humans, but how? About the cognitive effort and moral-emotional language of LLM arguments [0.0]
大型言語モデル(LLM)はすでに人間と同じくらい説得力がある。
本稿では, LLMの説得戦略について, 人為的議論と比較し検討する。
論文 参考訳(メタデータ) (2024-04-14T19:01:20Z) - How do Large Language Models Navigate Conflicts between Honesty and
Helpfulness? [14.706111954807021]
人間の振る舞いを特徴付けるための心理モデルと実験を用いて、大きな言語モデルを分析する。
人間のフィードバックからの強化学習は、誠実さと有用性の両方を改善している。
GPT-4 Turboは、会話のフレーミングやリスナーの判断コンテキストに対する感度を含む人間的な応答パターンを実証する。
論文 参考訳(メタデータ) (2024-02-11T19:13:26Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
我々は、感情的な刺激を理解するために、大規模言語モデルの能力を探究する第一歩を踏み出す。
実験の結果,LLMは感情的知能を把握でき,その性能は感情的刺激によって改善できることがわかった。
EmotionPromptが生成タスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-07-14T00:57:12Z) - PromptRobust: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts [76.18347405302728]
本研究は、文字、単語、文、意味といった複数のレベルにわたるプロンプトを標的とした、敵対的なテキスト攻撃を多用する。
相手のプロンプトは、感情分析、自然言語推論、読書理解、機械翻訳、数学の問題解決など様々なタスクに使用される。
以上の結果から,現代の大規模言語モデルでは,敵対的プロンプトに対して頑健ではないことが示唆された。
論文 参考訳(メタデータ) (2023-06-07T15:37:00Z) - Inducing anxiety in large language models can induce bias [47.85323153767388]
我々は、確立された12の大規模言語モデル(LLM)に焦点を当て、精神医学でよく用いられる質問紙に答える。
以上の結果から,最新のLSMの6つが不安アンケートに強く反応し,人間に匹敵する不安スコアが得られた。
不安誘発は、LSMのスコアが不安アンケートに影響を及ぼすだけでなく、人種差別や老化などの偏見を測る以前に確立されたベンチマークにおいて、それらの行動に影響を及ぼす。
論文 参考訳(メタデータ) (2023-04-21T16:29:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。