論文の概要: A CNN Approach to Automated Detection and Classification of Brain Tumors
- arxiv url: http://arxiv.org/abs/2502.09731v1
- Date: Thu, 13 Feb 2025 19:33:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:37.055993
- Title: A CNN Approach to Automated Detection and Classification of Brain Tumors
- Title(参考訳): 脳腫瘍の自動検出と分類のためのCNNアプローチ
- Authors: Md. Zahid Hasan, Abdullah Tamim, D. M. Asadujjaman, Md. Mahfujur Rahman, Md. Abu Ahnaf Mollick, Nosin Anjum Dristi, Abdullah-Al-Noman,
- Abstract要約: 本研究の目的は、提供されたMRIデータを分析して、健康な脳組織と脳腫瘍を分類することである。
モデル作成に使用されるデータセットは、3,264個の脳MRIスキャンを含む、一般にアクセス可能で検証された脳腫瘍分類(MRI)データベースである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Brain tumors require an assessment to ensure timely diagnosis and effective patient treatment. Morphological factors such as size, location, texture, and variable appearance com- plicate tumor inspection. Medical imaging presents challenges, including noise and incomplete images. This research article presents a methodology for processing Magnetic Resonance Imag- ing (MRI) data, encompassing techniques for image classification and denoising. The effective use of MRI images allows medical professionals to detect brain disorders, including tumors. This research aims to categorize healthy brain tissue and brain tumors by analyzing the provided MRI data. Unlike alternative methods like Computed Tomography (CT), MRI technology offers a more detailed representation of internal anatomical components, mak- ing it a suitable option for studying data related to brain tumors. The MRI picture is first subjected to a denoising technique utilizing an Anisotropic diffusion filter. The dataset utilized for the models creation is a publicly accessible and validated Brain Tumour Classification (MRI) database, comprising 3,264 brain MRI scans. SMOTE was employed for data augmentation and dataset balancing. Convolutional Neural Networks(CNN) such as ResNet152V2, VGG, ViT, and EfficientNet were employed for the classification procedure. EfficientNet attained an accuracy of 98%, the highest recorded.
- Abstract(参考訳): 脳腫瘍は、タイムリーな診断と効果的な患者治療を保証するために評価を必要とする。
大きさ、位置、テクスチャ、外見の変化などの形態的要因は、近視性腫瘍検査である。
医用画像はノイズや不完全な画像を含む課題を呈する。
本稿では,MRI(MRI)データを処理する手法について述べる。
MRI画像の有効利用により、医療専門家は腫瘍を含む脳疾患を検出することができる。
本研究の目的は、提供されたMRIデータを分析して、健康な脳組織と脳腫瘍を分類することである。
CT(Computerd Tomography)のような代替手法とは異なり、MRI技術は脳腫瘍に関連するデータを研究するのに適した方法として、より詳細な解剖学的成分の表現を提供する。
このMRI画像は、まず、異方性拡散フィルタを用いたデノナイジング技術により撮影される。
モデル作成に使用されるデータセットは、3,264個の脳MRIスキャンを含む、一般にアクセス可能で検証された脳腫瘍分類(MRI)データベースである。
SMOTEはデータ拡張とデータセットのバランシングに使用された。
ResNet152V2, VGG, ViT, EfficientNetなどの畳み込みニューラルネットワーク(CNN)を用いて分類を行った。
EfficientNetは98%の精度で達成した。
関連論文リスト
- Robust Brain MRI Image Classification with SIBOW-SVM [1.3597551064547502]
脳腫瘍の早期発見は、がんの予防と治療に重要であり、究極的にはヒトの寿命を向上させる。
MRIは、スキャンによって包括的な脳画像を生成することで、脳腫瘍を検出する最も効果的な技術である。
CNNを含むディープラーニングに基づく画像分類手法は、適切なモデルキャリブレーションなしでクラス確率を推定する際の課題に直面している。
本稿では,Bag-of-Features(BoF)モデルとSIFT特徴抽出と重み付きサポートベクトルマシン(wSVM)を統合した新しい脳腫瘍画像分類手法であるSIBOW-SVMを提案する。
以上の結果から,新しい手法は最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-15T12:26:24Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
脳腫瘍は、すべての年齢層で高い有病率と死亡率のため、世界的な健康上の大きな課題となる。
本研究は,MRI画像を用いた脳腫瘍検出における畳み込みニューラルネットワーク(CNN)の使用に関する包括的研究である。
このデータセットは、健康な個人と脳腫瘍患者のMRIスキャンで作成され、CNNアーキテクチャーに入力された。
論文 参考訳(メタデータ) (2023-10-26T18:27:20Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
パブリックMRIデータセットは、脳腫瘍、髄膜腫、グリオーマ、下垂体腫瘍の3つの変種を持つ233人の患者の3064 TI強調画像を含む。
データセットファイルは、よく知られた画像セグメンテーション深層学習モデルの実装とトレーニングを利用する方法論に順応する前に、変換され、前処理される。
実験の結果,Adamを用いた再帰的残差U-Netは平均差0.8665に到達し,他の最先端ディープラーニングモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-29T13:33:21Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
この分類モデルはEfficientNetB1アーキテクチャに基づいており、画像は髄膜腫、グリオーマ、下垂体腺腫、腫瘍の4つのクラスに分類するよう訓練されている。
セグメンテーションモデルはU-Netアーキテクチャに基づいており、MRI画像から腫瘍を正確にセグメンテーションするように訓練されている。
論文 参考訳(メタデータ) (2023-04-20T01:32:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3次元CNNモデルが磁気共鳴画像(MRI)解析の分野を支配している。
本稿では,アルツハイマー病とパーキンソン病の認識の4つのデータセットを実験に利用した。
効率の面では、ビデオフレームワークは3D-CNNモデルよりも5%から11%、トレーニング可能なパラメータは50%から66%少ない。
論文 参考訳(メタデータ) (2023-02-24T15:26:31Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
我々は、Deep Transfer Learningを用いて脳MRI画像中の腫瘍の多重分類を行うフレームワークを開発した。
新たなデータセットと2つの公開MRI脳データセットを使用して、提案手法は86.40%の精度で分類された。
本研究は,脳腫瘍のマルチクラス化タスクにおいて,トランスファーラーニングのためのフレームワークが有用かつ効果的な方法であることを示すものである。
論文 参考訳(メタデータ) (2021-06-14T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。