A CNN Approach to Automated Detection and Classification of Brain Tumors
- URL: http://arxiv.org/abs/2502.09731v1
- Date: Thu, 13 Feb 2025 19:33:26 GMT
- Title: A CNN Approach to Automated Detection and Classification of Brain Tumors
- Authors: Md. Zahid Hasan, Abdullah Tamim, D. M. Asadujjaman, Md. Mahfujur Rahman, Md. Abu Ahnaf Mollick, Nosin Anjum Dristi, Abdullah-Al-Noman,
- Abstract summary: This research aims to categorize healthy brain tissue and brain tumors by analyzing the provided MRI data.
The dataset utilized for the models creation is a publicly accessible and validated Brain Tumour Classification (MRI) database, comprising 3,264 brain MRI scans.
- Score: 0.0
- License:
- Abstract: Brain tumors require an assessment to ensure timely diagnosis and effective patient treatment. Morphological factors such as size, location, texture, and variable appearance com- plicate tumor inspection. Medical imaging presents challenges, including noise and incomplete images. This research article presents a methodology for processing Magnetic Resonance Imag- ing (MRI) data, encompassing techniques for image classification and denoising. The effective use of MRI images allows medical professionals to detect brain disorders, including tumors. This research aims to categorize healthy brain tissue and brain tumors by analyzing the provided MRI data. Unlike alternative methods like Computed Tomography (CT), MRI technology offers a more detailed representation of internal anatomical components, mak- ing it a suitable option for studying data related to brain tumors. The MRI picture is first subjected to a denoising technique utilizing an Anisotropic diffusion filter. The dataset utilized for the models creation is a publicly accessible and validated Brain Tumour Classification (MRI) database, comprising 3,264 brain MRI scans. SMOTE was employed for data augmentation and dataset balancing. Convolutional Neural Networks(CNN) such as ResNet152V2, VGG, ViT, and EfficientNet were employed for the classification procedure. EfficientNet attained an accuracy of 98%, the highest recorded.
Related papers
- Robust Brain MRI Image Classification with SIBOW-SVM [1.3597551064547502]
Early detection of brain tumor types is critical for cancer prevention and treatment, ultimately improving human life expectancy.
MRI stands as the most effective technique to detect brain tumors by generating comprehensive brain images through scans.
Deep learning-based image classification methods, including CNN, face challenges in estimating class probabilities without proper model calibration.
We propose a novel brain tumor image classification method, called SIBOW-SVM, which integrates the Bag-of-Features (BoF) model with SIFT feature extraction and weighted Support Vector Machines (wSVMs)
Our results show that the new method outperforms state-of-the-art
arXiv Detail & Related papers (2023-11-15T12:26:24Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
Brain tumors pose a significant global health challenge due to their high prevalence and mortality rates across all age groups.
This study presents a comprehensive investigation into the use of Convolutional Neural Networks (CNNs) for brain tumor detection using Magnetic Resonance Imaging (MRI) images.
The dataset, consisting of MRI scans from both healthy individuals and patients with brain tumors, was processed and fed into the CNN architecture.
arXiv Detail & Related papers (2023-10-26T18:27:20Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
The classification model is based on the EfficientNetB1 architecture and is trained to classify images into four classes: meningioma, glioma, pituitary adenoma, and no tumor.
The segmentation model is based on the U-Net architecture and is trained to accurately segment the tumor from the MRI images.
arXiv Detail & Related papers (2023-04-20T01:32:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.