Medical Applications of Graph Convolutional Networks Using Electronic Health Records: A Survey
- URL: http://arxiv.org/abs/2502.09781v1
- Date: Thu, 13 Feb 2025 21:30:21 GMT
- Title: Medical Applications of Graph Convolutional Networks Using Electronic Health Records: A Survey
- Authors: Garrik Hoyt, Noyonica Chatterjee, Fortunato Battaglia, Paramita Basu,
- Abstract summary: Graph Convolutional Networks (GCNs) have emerged as a promising approach to machine learning on Electronic Health Records (EHRs)
GCNs can capture complex relationships and extract meaningful insights to support medical decision making.
This survey provides an overview of the current research in applying GCNs to EHR data.
- Score: 0.0
- License:
- Abstract: Graph Convolutional Networks (GCNs) have emerged as a promising approach to machine learning on Electronic Health Records (EHRs). By constructing a graph representation of patient data and performing convolutions on neighborhoods of nodes, GCNs can capture complex relationships and extract meaningful insights to support medical decision making. This survey provides an overview of the current research in applying GCNs to EHR data. We identify the key medical domains and prediction tasks where these models are being utilized, common benchmark datasets, and architectural patterns to provide a comprehensive survey of this field. While this is a nascent area of research, GCNs demonstrate strong potential to leverage the complex information hidden in EHRs. Challenges and opportunities for future work are also discussed.
Related papers
- Evaluating the Predictive Features of Person-Centric Knowledge Graph Embeddings: Unfolding Ablation Studies [0.757843972001219]
We propose a systematic approach to examine the results of GNN models trained with structured and unstructured information from the MIMIC-III dataset.
We show the robustness of this approach in identifying predictive features in PKGs for the task of readmission prediction.
arXiv Detail & Related papers (2024-08-27T09:48:25Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - A Systematic Review of Deep Graph Neural Networks: Challenges,
Classification, Architectures, Applications & Potential Utility in
Bioinformatics [0.0]
Graph neural networks (GNNs) employ message transmission between graph nodes to represent graph dependencies.
GNNs have the potential to be an excellent tool for solving a wide range of biological challenges in bioinformatics research.
arXiv Detail & Related papers (2023-11-03T10:25:47Z) - Knowledge Graph Embedding with Electronic Health Records Data via Latent
Graphical Block Model [13.398292423857756]
We propose to infer the conditional dependency structure among EHR features via a latent graphical block model (LGBM)
We establish the statistical rates of the proposed estimators and show the perfect recovery of the block structure.
arXiv Detail & Related papers (2023-05-31T16:18:46Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - A review of Generative Adversarial Networks for Electronic Health
Records: applications, evaluation measures and data sources [8.319639237899155]
Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions.
This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies.
We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices.
arXiv Detail & Related papers (2022-03-14T11:56:47Z) - A Computational Framework for Modeling Complex Sensor Network Data Using
Graph Signal Processing and Graph Neural Networks in Structural Health
Monitoring [0.7519872646378835]
We present a framework based on Complex Network Modeling, integrating Graph Signal Processing (GSP) and Graph Neural Network (GNN) approaches.
We focus on a prominent real-world structural health monitoring use case, i.e., modeling and analyzing sensor data (strain, vibration) of a large bridge in the Netherlands.
arXiv Detail & Related papers (2021-05-01T10:45:57Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
We propose Heterogeneous Similarity Graph Neural Network (HSGNN) to analyze EHRs with a novel heterogeneous GNN.
Our framework consists of two parts: one is a preprocessing method and the other is an end-to-end GNN.
The GNN takes all homogeneous graphs as input and fuses all of them into one graph to make a prediction.
arXiv Detail & Related papers (2021-01-17T23:14:29Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.