論文の概要: Statistical Coherence Alignment for Large Language Model Representation Learning Through Tensor Field Convergence
- arxiv url: http://arxiv.org/abs/2502.09815v1
- Date: Thu, 13 Feb 2025 23:24:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 18:06:55.942418
- Title: Statistical Coherence Alignment for Large Language Model Representation Learning Through Tensor Field Convergence
- Title(参考訳): テンソル場収束による大規模言語モデル表現学習のための統計的コヒーレンスアライメント
- Authors: Jonathan Gale, Godfrey Aldington, Harriet Thistlewood, Thomas Tattershall, Basil Wentworth, Vincent Enoasmo,
- Abstract要約: 表現学習は、言語の統計的特性を捉えるために、内部埋め込みを構築する上で中心的な役割を果たす。
コヒーレンスアライメントはテンソル場収束を通じて構造化トークン表現を強制する手法として導入された。
経験的評価は、コヒーレンス制約の適用によりパープレキシティが向上し、分類精度が向上し、稀な単語の埋め込みが洗練されることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Representation learning plays a central role in structuring internal embeddings to capture the statistical properties of language, influencing the coherence and contextual consistency of generated text. Statistical Coherence Alignment is introduced as a method to enforce structured token representations through tensor field convergence, guiding embeddings to reflect statistical dependencies inherent in linguistic data. A mathematical framework is established to quantify coherence alignment, integrating a loss function that optimizes representational consistency across training iterations. Empirical evaluations demonstrate that applying coherence constraints improves perplexity, enhances classification accuracy, and refines rare word embeddings, contributing to a more stable representation space. Comparative analyses with baseline models reveal that the proposed method fosters a more interpretable internal structure, ensuring that embeddings retain contextual dependencies while mitigating representation collapse. The impact on coherence score distributions suggests that the alignment mechanism strengthens semantic integrity across diverse linguistic constructs, leading to a more balanced organization of learned embeddings. Computational assessments indicate that while the method introduces additional memory and training costs, the structured optimization process justifies the trade-offs in applications requiring heightened contextual fidelity. Experimental results validate the effectiveness of coherence alignment in optimizing token representations, providing insights into how statistical dependencies can be leveraged to improve language model training.
- Abstract(参考訳): 表現学習は、言語の統計的特性を捉え、生成したテキストの一貫性と文脈整合性に影響を与えるために、内部埋め込みを構築する上で中心的な役割を果たす。
統計的コヒーレンスアライメントは、テンソル場収束を通じて構造化トークン表現を強制する手法として導入され、埋め込みは言語データに固有の統計的依存関係を反映する。
コヒーレンスアライメントを定量化する数学的枠組みが確立され、トレーニングイテレーション間の表現整合性を最適化する損失関数が統合される。
経験的評価では、コヒーレンス制約を適用することでパープレキシティが向上し、分類精度が向上し、稀な単語の埋め込みが洗練され、より安定した表現空間に寄与することが示されている。
ベースラインモデルとの比較分析により,提案手法はより解釈可能な内部構造を育み,埋め込みがコンテキスト依存を維持しつつ表現崩壊を緩和することを明らかにした。
コヒーレンススコア分布への影響は、アライメント機構が多種多様な言語構成物間のセマンティックな整合性を強化し、学習された埋め込みのよりバランスのとれた組織をもたらすことを示唆している。
計算学的評価は、この手法が追加のメモリとトレーニングコストを導入する一方で、構造化された最適化プロセスは、コンテキストの忠実度を高める必要があるアプリケーションのトレードオフを正当化することを示している。
実験結果は,トークン表現の最適化におけるコヒーレンスアライメントの有効性を検証し,言語モデルトレーニングを改善するために,統計的依存関係をどのように活用できるかについての洞察を提供する。
関連論文リスト
- Probabilistic Lexical Manifold Construction in Large Language Models via Hierarchical Vector Field Interpolation [0.0]
提案手法は,単語表現が位相的整合性に従属する確率関数空間を構築する。
確率制約は、文脈関係を洗練することによって語彙コヒーレンスを高め、複数の言語分布における意味的安定性を改善する。
計算効率の評価では、表現は小さな処理オーバーヘッドをもたらすが、構造化された表現学習アプローチは実用的展開にはスケーラブルである。
論文 参考訳(メタデータ) (2025-02-14T08:47:10Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
潜在トークン表現の組織化は、言語モデルの安定性、一般化、文脈整合性を決定する上で重要な役割を果たす。
コアモデル重みを変化させることなくトークン埋め込みに階層的アライメント手法を導入した。
実験により, 希少なトークン検索, 逆方向, 長距離依存性追跡の改善が示された。
論文 参考訳(メタデータ) (2025-02-06T04:01:27Z) - Contextual Morphogenesis in Large Language Models: A Novel Approach to Self-Organizing Token Representations [0.0]
文脈形態形成は、学習された文脈依存に基づいてトークン境界を再構成する自己組織化機構を確立する。
経験的評価は、動的に調整されたトークン化が表現安定性を維持しながら複雑度を低下させることを示す。
異なる言語コーパス間の比較評価は、適応的トークン化は解釈可能性を維持しつつ、文脈的手がかりとの整合性を改善することを示唆している。
構造安定性の精製と予測性能における文脈形態形成の有効性は、従来のトークン化法に代わるものとしての生存性を強調している。
論文 参考訳(メタデータ) (2025-02-01T03:50:46Z) - Intrinsic Tensor Field Propagation in Large Language Models: A Novel Approach to Contextual Information Flow [0.0]
内在的場伝播は、様々な言語構造にわたる文脈的保持、依存性の解決、推論を改善する。
オープンソーストランスフォーマーベースのモデルで行った実験では、様々な言語構造にわたる文脈保持、依存関係の解決、推論において測定可能な改善が提供されている。
論文 参考訳(メタデータ) (2025-01-31T08:32:32Z) - Neural Contextual Reinforcement Framework for Logical Structure Language Generation [1.08272575635683]
このフレームワークはカスタム報酬関数と動的コンテキストアライメント機構を統合している。
論理構造やセマンティックフローに対する人間の期待と密接に一致した出力を生成する。
さまざまなモデルサイズにわたるノイズの多い入力データとスケーラビリティを扱う上で、堅牢性を示す。
論文 参考訳(メタデータ) (2025-01-20T11:34:28Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Learning Relation Alignment for Calibrated Cross-modal Retrieval [52.760541762871505]
言語的・視覚的関係のセマンティックな距離を計測し,関係の一貫性を定量化するための新しい指標ISD(Intra-modal Self-attention Distance)を提案する。
ISDを最適化し、モダル間アライメントを介してモダル内アライメントを相互に調整するための正規化訓練法である、モダル内アライメント(IAIS)について述べる。
論文 参考訳(メタデータ) (2021-05-28T14:25:49Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。