論文の概要: Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence
- arxiv url: http://arxiv.org/abs/2502.09927v1
- Date: Fri, 14 Feb 2025 05:36:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:34.741589
- Title: Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence
- Title(参考訳): Granite Vision:エンタープライズインテリジェンスのための軽量でオープンソースのマルチモーダルモデル
- Authors: Granite Vision Team, Leonid Karlinsky, Assaf Arbelle, Abraham Daniels, Ahmed Nassar, Amit Alfassi, Bo Wu, Eli Schwartz, Dhiraj Joshi, Jovana Kondic, Nimrod Shabtay, Pengyuan Li, Roei Herzig, Shafiq Abedin, Shaked Perek, Sivan Harary, Udi Barzelay, Adi Raz Goldfarb, Aude Oliva, Ben Wieles, Bishwaranjan Bhattacharjee, Brandon Huang, Christoph Auer, Dan Gutfreund, David Beymer, David Wood, Hilde Kuehne, Jacob Hansen, Joseph Shtok, Ken Wong, Luis Angel Bathen, Mayank Mishra, Maksym Lysak, Michele Dolfi, Mikhail Yurochkin, Nikolaos Livathinos, Nimrod Harel, Ophir Azulai, Oshri Naparstek, Rafael Teixeira de Lima, Rameswar Panda, Sivan Doveh, Shubham Gupta, Subhro Das, Syed Zawad, Yusik Kim, Zexue He, Alexander Brooks, Gabe Goodhart, Anita Govindjee, Derek Leist, Ibrahim Ibrahim, Aya Soffer, David Cox, Kate Soule, Luis Lastras, Nirmit Desai, Shila Ofek-koifman, Sriram Raghavan, Tanveer Syeda-Mahmood, Peter Staar, Tal Drory, Rogerio Feris,
- Abstract要約: 視覚機能を備えた軽量な大規模言語モデルであるGranite Visionを紹介した。
我々のモデルは、包括的な命令追従データセットに基づいて訓練されている。
Granite Visionは、ビジュアル文書理解に関連する標準ベンチマークで強力な結果を得る。
- 参考スコア(独自算出の注目度): 88.74800617923083
- License:
- Abstract: We introduce Granite Vision, a lightweight large language model with vision capabilities, specifically designed to excel in enterprise use cases, particularly in visual document understanding. Our model is trained on a comprehensive instruction-following dataset, including document-related tasks, such as content extraction from tables, charts, diagrams, sketches, and infographics, as well as general image tasks. The architecture of Granite Vision is centered around visual modality alignment with a decoder-only, 2 billion parameter Granite large language model. Additionally, we introduce a dedicated safety classification approach in test-time that leverages a sparse set of attention vectors to identify potential harmful inputs. Despite its lightweight architecture, Granite Vision achieves strong results in standard benchmarks related to visual document understanding, as well as on the LiveXiv benchmark, which is designed to avoid test set contamination by using a constantly updated corpus of recently published Arxiv papers. We are releasing the model under the Apache-2 license, allowing for both research and commercial use, while offering complete visibility into the training data and other relevant details. See https://huggingface.co/ibm-granite/ for model weights.
- Abstract(参考訳): 視覚機能を備えた軽量な大規模言語モデルであるGranite Visionを紹介します。
本モデルは,表やチャート,図表,スケッチ,インフォグラフィックなどの文書関連タスクや,一般的なイメージタスクを含む,総合的なインストラクションフォローデータセットに基づいて訓練されている。
Granite Visionのアーキテクチャは、デコーダのみの20億パラメータのGranite大言語モデルによる視覚的モダリティアライメントを中心にしている。
さらに,無数の注意ベクトルを用いて潜在的な有害な入力を識別するテストタイムに,専用の安全分類手法を導入する。
軽量なアーキテクチャにもかかわらず、Granite Visionは、ビジュアル文書理解に関連する標準ベンチマークや、最近公開されたArxiv論文の絶えず更新されたコーパスを使用してテストセットの汚染を避けるために設計されたLiveXivベンチマークにおいて、強力な結果を達成している。
私たちはこのモデルをApache-2ライセンスでリリースし、研究と商業の両方で使用できるようにし、トレーニングデータやその他の関連する詳細を完全な可視性を提供しています。
モデルウェイトについてはhttps://huggingface.co/ibm-granite/を参照。
関連論文リスト
- Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
我々は、Interleaved Image-Text (IITC) と呼ばれる、より要求の多い新しいタスクを導入する。
この課題は、画像とテキストの両方の過剰な要素を識別・無視し、質問に正確に答えるためにモデルに挑戦する。
このタスクを支援するために、科学コンテンツに関するIITCタスクに適した新しいVEGAデータセットを構築し、サブタスクである画像テキストアソシエーション(ITA)を考案した。
論文 参考訳(メタデータ) (2024-06-14T17:59:40Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2は、エンドツーエンドの汎用マルチモーダル大モデル(MLLM)である。
単一のフレームワーク内で視覚的知覚、理解、生成を統一する。
論文 参考訳(メタデータ) (2024-06-12T16:44:50Z) - Griffon v2: Advancing Multimodal Perception with High-Resolution Scaling and Visual-Language Co-Referring [27.45225442048711]
我々は、視覚的およびテキスト的プロンプトによるフレキシブルなオブジェクト参照を可能にする、統合された高分解能一般化モデル、Griffon v2を導入する。
我々は,大規模言語モデルにおける入力トークン制約を克服するために,シンプルで軽量なダウンサンプリングプロジェクタを設計する。
実験により、Griffon v2は、視覚的およびテキスト的参照で関心のあるオブジェクトをローカライズし、REC、フレーズグラウンド、REGタスクにおける最先端のパフォーマンスを実現し、オブジェクト検出とオブジェクトカウントのエキスパートモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T12:21:37Z) - Annotation Free Semantic Segmentation with Vision Foundation Models [11.026377387506216]
既存の基盤モデルを用いて,任意のセマンティックセグメンテーションデータセットに対してフリーアノテーションを生成する。
CLIPを使ってオブジェクトとSAMを検出し、高品質なオブジェクトマスクを生成します。
我々のアプローチは、最小限のトレーニングで事前訓練された視覚エンコーダに言語ベースのセマンティクスをもたらすことができる。
論文 参考訳(メタデータ) (2024-03-14T11:57:58Z) - InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists [66.85125112199898]
我々は,タスク固有の設計選択を抽象化する,コンピュータビジョンタスクのための統一言語インタフェースを開発する。
InstructCVと呼ばれる我々のモデルは、他のジェネラリストやタスク固有の視覚モデルと比較して競合的に機能する。
論文 参考訳(メタデータ) (2023-09-30T14:26:43Z) - Leveraging Contextual Information for Effective Entity Salience Detection [21.30389576465761]
クロスエンコーダアーキテクチャを用いた中規模言語モデルの微調整により,機能工学的アプローチよりも優れた性能が得られることを示す。
また、命令調整言語モデルのゼロショットプロンプトは、タスクの特異性と複雑さを示す劣った結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-09-14T19:04:40Z) - VisionLLM: Large Language Model is also an Open-Ended Decoder for
Vision-Centric Tasks [81.32968995346775]
VisionLLMは視覚中心のタスクのためのフレームワークで、柔軟に定義され、言語命令を使って管理できる。
検出固有モデルと同等の精度で,COCO上で60%以上のmAPを達成できる。
論文 参考訳(メタデータ) (2023-05-18T17:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。