A Lightweight and Effective Image Tampering Localization Network with Vision Mamba
- URL: http://arxiv.org/abs/2502.09941v1
- Date: Fri, 14 Feb 2025 06:35:44 GMT
- Title: A Lightweight and Effective Image Tampering Localization Network with Vision Mamba
- Authors: Kun Guo, Gang Cao, Zijie Lou, Xianglin Huang, Jiaoyun Liu,
- Abstract summary: Current image tampering localization methods rely on Convolutional Neural Networks (CNNs) and Transformers.
We propose a lightweight and effective FORensic network based on vision MAmba (ForMa) for blind image tampering localization.
- Score: 5.369780585789917
- License:
- Abstract: Current image tampering localization methods primarily rely on Convolutional Neural Networks (CNNs) and Transformers. While CNNs suffer from limited local receptive fields, Transformers offer global context modeling at the expense of quadratic computational complexity. Recently, the state space model Mamba has emerged as a competitive alternative, enabling linear-complexity global dependency modeling. Inspired by it, we propose a lightweight and effective FORensic network based on vision MAmba (ForMa) for blind image tampering localization. Firstly, ForMa captures multi-scale global features that achieves efficient global dependency modeling through linear complexity. Then the pixel-wise localization map is generated by a lightweight decoder, which employs a parameter-free pixel shuffle layer for upsampling. Additionally, a noise-assisted decoding strategy is proposed to integrate complementary manipulation traces from tampered images, boosting decoder sensitivity to forgery cues. Experimental results on 10 standard datasets demonstrate that ForMa achieves state-of-the-art generalization ability and robustness, while maintaining the lowest computational complexity. Code is available at https://github.com/multimediaFor/ForMa.
Related papers
- LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
Local Attentional Mamba blocks capture both global contexts and local details with linear complexity.
Our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution.
Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62% GFLOPs.
arXiv Detail & Related papers (2024-08-05T16:39:39Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - MxT: Mamba x Transformer for Image Inpainting [11.447968918063335]
Image inpainting aims to restore missing or damaged regions of images with semantically coherent content.
We introduce MxT composed of the proposed Hybrid Module (HM), which combines Mamba with the transformer in a synergistic manner.
Our HM facilitates dual-level interaction learning at both pixel and patch levels, greatly enhancing the model to reconstruct images with high quality and contextual accuracy.
arXiv Detail & Related papers (2024-07-23T02:21:11Z) - EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba [19.062950348441426]
This work proposes to explore the potential of visual state space models in light-weight model design and introduce a novel efficient model variant dubbed EfficientVMamba.
Our EfficientVMamba integrates a atrous-based selective scan approach by efficient skip sampling, constituting building blocks designed to harness both global and local representational features.
Experimental results show that, EfficientVMamba scales down the computational complexity while yields competitive results across a variety of vision tasks.
arXiv Detail & Related papers (2024-03-15T02:48:47Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Low-Resolution Self-Attention for Semantic Segmentation [93.30597515880079]
We introduce the Low-Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost.
Our approach involves computing self-attention in a fixed low-resolution space regardless of the input image's resolution.
We demonstrate the effectiveness of our LRSA approach by building the LRFormer, a vision transformer with an encoder-decoder structure.
arXiv Detail & Related papers (2023-10-08T06:10:09Z) - MLIC++: Linear Complexity Multi-Reference Entropy Modeling for Learned
Image Compression [30.71965784982577]
We introduce MEM++, which captures diverse range of correlations inherent in the latent representation.
MEM++ achieves state-of-the-art performance, reducing BD-rate by 13.39% on the Kodak dataset compared to VTM-17.0 in PSNR.
MLIC++ exhibits linear GPU memory consumption with resolution, making it highly suitable for high-resolution image coding.
arXiv Detail & Related papers (2023-07-28T09:11:37Z) - SUMD: Super U-shaped Matrix Decomposition Convolutional neural network
for Image denoising [0.0]
We introduce the matrix decomposition module(MD) in the network to establish the global context feature.
Inspired by the design of multi-stage progressive restoration of U-shaped architecture, we further integrate the MD module into the multi-branches.
Our model(SUMD) can produce comparable visual quality and accuracy results with Transformer-based methods.
arXiv Detail & Related papers (2022-04-11T04:38:34Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
We propose cascaded modulation GAN (CM-GAN) to generate plausible image structures when dealing with large holes in complex images.
In each decoder block, global modulation is first applied to perform coarse semantic-aware synthesis structure, then spatial modulation is applied on the output of global modulation to further adjust the feature map in a spatially adaptive fashion.
In addition, we design an object-aware training scheme to prevent the network from hallucinating new objects inside holes, fulfilling the needs of object removal tasks in real-world scenarios.
arXiv Detail & Related papers (2022-03-22T16:13:27Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.