Navigating Label Ambiguity for Facial Expression Recognition in the Wild
- URL: http://arxiv.org/abs/2502.09993v1
- Date: Fri, 14 Feb 2025 08:24:38 GMT
- Title: Navigating Label Ambiguity for Facial Expression Recognition in the Wild
- Authors: JunGyu Lee, Yeji Choi, Haksub Kim, Ig-Jae Kim, Gi Pyo Nam,
- Abstract summary: We propose a novel framework called Navigating Label Ambiguity (NLA), which is robust under real-world conditions.
The motivation behind NLA is that dynamically estimating and emphasizing ambiguous samples at each iteration helps mitigate noise and class imbalance.
Extensive experiments demonstrate that NLA outperforms existing methods in both overall and mean accuracy.
- Score: 13.242490592706805
- License:
- Abstract: Facial expression recognition (FER) remains a challenging task due to label ambiguity caused by the subjective nature of facial expressions and noisy samples. Additionally, class imbalance, which is common in real-world datasets, further complicates FER. Although many studies have shown impressive improvements, they typically address only one of these issues, leading to suboptimal results. To tackle both challenges simultaneously, we propose a novel framework called Navigating Label Ambiguity (NLA), which is robust under real-world conditions. The motivation behind NLA is that dynamically estimating and emphasizing ambiguous samples at each iteration helps mitigate noise and class imbalance by reducing the model's bias toward majority classes. To achieve this, NLA consists of two main components: Noise-aware Adaptive Weighting (NAW) and consistency regularization. Specifically, NAW adaptively assigns higher importance to ambiguous samples and lower importance to noisy ones, based on the correlation between the intermediate prediction scores for the ground truth and the nearest negative. Moreover, we incorporate a regularization term to ensure consistent latent distributions. Consequently, NLA enables the model to progressively focus on more challenging ambiguous samples, which primarily belong to the minority class, in the later stages of training. Extensive experiments demonstrate that NLA outperforms existing methods in both overall and mean accuracy, confirming its robustness against noise and class imbalance. To the best of our knowledge, this is the first framework to address both problems simultaneously.
Related papers
- Foster Adaptivity and Balance in Learning with Noisy Labels [26.309508654960354]
We propose a novel approach named textbfSED to deal with label noise in a textbfSelf-adaptivtextbfE and class-balancetextbfD manner.
A mean-teacher model is then employed to correct labels of noisy samples.
We additionally propose a self-adaptive and class-balanced sample re-weighting mechanism to assign different weights to detected noisy samples.
arXiv Detail & Related papers (2024-07-03T03:10:24Z) - Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
Pseudo-label noise is mainly contained in unstable samples in which predictions of most pixels undergo significant variations during self-training.
We introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples.
SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings.
arXiv Detail & Related papers (2024-06-10T21:44:52Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Fairness Improves Learning from Noisily Labeled Long-Tailed Data [119.0612617460727]
Long-tailed and noisily labeled data frequently appear in real-world applications and impose significant challenges for learning.
We introduce the Fairness Regularizer (FR), inspired by regularizing the performance gap between any two sub-populations.
We show that the introduced fairness regularizer improves the performances of sub-populations on the tail and the overall learning performance.
arXiv Detail & Related papers (2023-03-22T03:46:51Z) - Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
We propose a two-stage clean samples identification method.
First, we employ a class-level feature clustering procedure for the early identification of clean samples.
Second, for the remaining clean samples that are close to the ground truth class boundary, we propose a novel consistency-based classification method.
arXiv Detail & Related papers (2022-07-29T04:54:57Z) - Identifying Hard Noise in Long-Tailed Sample Distribution [76.16113794808001]
We introduce Noisy Long-Tailed Classification (NLT)
Most de-noising methods fail to identify the hard noises.
We design an iterative noisy learning framework called Hard-to-Easy (H2E)
arXiv Detail & Related papers (2022-07-27T09:03:03Z) - Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets [23.4536532321199]
We propose an Uncertainty-aware Label Correction framework to handle label noise on imbalanced datasets.
Inspired by our observations, we propose an Uncertainty-aware Label Correction framework to handle label noise on imbalanced datasets.
arXiv Detail & Related papers (2022-07-12T11:35:55Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.