Classifying Long-tailed and Label-noise Data via Disentangling and Unlearning
- URL: http://arxiv.org/abs/2503.11414v1
- Date: Fri, 14 Mar 2025 13:58:27 GMT
- Title: Classifying Long-tailed and Label-noise Data via Disentangling and Unlearning
- Authors: Chen Shu, Mengke Li, Yiqun Zhang, Yang Lu, Bo Han, Yiu-ming Cheung, Hanzi Wang,
- Abstract summary: In real-world datasets, the challenges of long-tailed distributions and noisy labels often coexist.<n>We propose a novel method called Disentangling and Unlearning for Long-tailed and Label-noisy data.
- Score: 58.052712054684946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world datasets, the challenges of long-tailed distributions and noisy labels often coexist, posing obstacles to the model training and performance. Existing studies on long-tailed noisy label learning (LTNLL) typically assume that the generation of noisy labels is independent of the long-tailed distribution, which may not be true from a practical perspective. In real-world situaiton, we observe that the tail class samples are more likely to be mislabeled as head, exacerbating the original degree of imbalance. We call this phenomenon as ``tail-to-head (T2H)'' noise. T2H noise severely degrades model performance by polluting the head classes and forcing the model to learn the tail samples as head. To address this challenge, we investigate the dynamic misleading process of the nosiy labels and propose a novel method called Disentangling and Unlearning for Long-tailed and Label-noisy data (DULL). It first employs the Inner-Feature Disentangling (IFD) to disentangle feature internally. Based on this, the Inner-Feature Partial Unlearning (IFPU) is then applied to weaken and unlearn incorrect feature regions correlated to wrong classes. This method prevents the model from being misled by noisy labels, enhancing the model's robustness against noise. To provide a controlled experimental environment, we further propose a new noise addition algorithm to simulate T2H noise. Extensive experiments on both simulated and real-world datasets demonstrate the effectiveness of our proposed method.
Related papers
- Correcting Noisy Multilabel Predictions: Modeling Label Noise through Latent Space Shifts [4.795811957412855]
Noise in data appears to be inevitable in most real-world machine learning applications.<n>We investigate the less explored area of noisy label learning for multilabel classifications.<n>Our model posits that label noise arises from a shift in the latent variable, providing a more robust and beneficial means for noisy learning.
arXiv Detail & Related papers (2025-02-20T05:41:52Z) - Label-Noise Robust Diffusion Models [18.82847557713331]
Conditional diffusion models have shown remarkable performance in various generative tasks.
Training them requires large-scale datasets that often contain noise in conditional inputs, a.k.a. noisy labels.
This paper proposes Transition-aware weighted Denoising Score Matching for training conditional diffusion models with noisy labels.
arXiv Detail & Related papers (2024-02-27T14:00:34Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Label-Noise Learning with Intrinsically Long-Tailed Data [65.41318436799993]
We propose a learning framework for label-noise learning with intrinsically long-tailed data.
Specifically, we propose two-stage bi-dimensional sample selection (TABASCO) to better separate clean samples from noisy samples.
arXiv Detail & Related papers (2022-08-21T07:47:05Z) - Identifying Hard Noise in Long-Tailed Sample Distribution [76.16113794808001]
We introduce Noisy Long-Tailed Classification (NLT)
Most de-noising methods fail to identify the hard noises.
We design an iterative noisy learning framework called Hard-to-Easy (H2E)
arXiv Detail & Related papers (2022-07-27T09:03:03Z) - Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets [23.4536532321199]
We propose an Uncertainty-aware Label Correction framework to handle label noise on imbalanced datasets.
Inspired by our observations, we propose an Uncertainty-aware Label Correction framework to handle label noise on imbalanced datasets.
arXiv Detail & Related papers (2022-07-12T11:35:55Z) - Towards Harnessing Feature Embedding for Robust Learning with Noisy
Labels [44.133307197696446]
The memorization effect of deep neural networks (DNNs) plays a pivotal role in recent label noise learning methods.
We propose a novel feature embedding-based method for deep learning with label noise, termed LabEl NoiseDilution (LEND)
arXiv Detail & Related papers (2022-06-27T02:45:09Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
This work investigates the label noise problem under long-tailed label distribution.
We propose a robust framework,algo, that realizes noise detection for long-tailed learning.
Our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation.
arXiv Detail & Related papers (2021-08-26T03:45:00Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.