What is a Feature, Really? Toward a Unified Understanding Across SE Disciplines
- URL: http://arxiv.org/abs/2502.10025v1
- Date: Fri, 14 Feb 2025 09:08:53 GMT
- Title: What is a Feature, Really? Toward a Unified Understanding Across SE Disciplines
- Authors: Nitish Patkar, Aimen Fahmi, Timo Kehrer, Norbert Seyff,
- Abstract summary: In software engineering, the concept of a feature'' is inconsistently defined across disciplines such as requirements engineering (RE) and software product lines (SPL)
This paper proposes an empirical, data-driven approach to explore how features are described, implemented, and managed across real-world projects.
- Score: 0.7125007887148752
- License:
- Abstract: In software engineering, the concept of a ``feature'' is widely used but inconsistently defined across disciplines such as requirements engineering (RE) and software product lines (SPL). This lack of consistency often results in communication gaps, rework, and inefficiencies in projects. To address these challenges, this paper proposes an empirical, data-driven approach to explore how features are described, implemented, and managed across real-world projects, starting with open-source software (OSS). By analyzing feature-related branches in OSS repositories, we identify patterns in contributor behavior, feature implementation, and project management activities. Our findings provide actionable insights to improve project planning, resource allocation, and team coordination. Additionally, we outline a roadmap to unify the understanding of features across software engineering disciplines. This research aims to bridge gaps between academic inquiry and practical strategies, fostering better feature planning and development workflows in diverse project environments.
Related papers
- On Sequential Fault-Intolerant Process Planning [60.66853798340345]
We propose and study a planning problem we call Sequential Fault-Intolerant Process Planning (SFIPP)
SFIPP captures a reward structure common in many sequential multi-stage decision problems where the planning is deemed successful only if all stages succeed.
We design provably tight online algorithms for settings in which we need to pick between different actions with unknown success chances at each stage.
arXiv Detail & Related papers (2025-02-07T15:20:35Z) - Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability [59.72892401927283]
We evaluate the planning capabilities of OpenAI's o1 models across a variety of benchmark tasks.
Our results reveal that o1-preview outperforms GPT-4 in adhering to task constraints.
arXiv Detail & Related papers (2024-09-30T03:58:43Z) - Using Agile Story Points and Game Theory Together: Better Software Planning and Development in Agile Software Development [0.0]
This study integrates key concepts from Agile software development, Story Point estimation, and Game Theory.
We propose the application of game theoretic strategies, notably the Vickrey Auction and Stag Hunt Game.
arXiv Detail & Related papers (2024-08-30T18:32:14Z) - How to Measure Performance in Agile Software Development? A Mixed-Method Study [2.477589198476322]
The study aims to identify challenges that arise when using agile software development performance metrics in practice.
Results show that while widely used performance metrics are widely used in practice, agile software development teams face challenges due to a lack of transparency and standardization as well as insufficient accuracy.
arXiv Detail & Related papers (2024-07-08T19:53:01Z) - An Empirical Study of Challenges in Machine Learning Asset Management [15.07444988262748]
Despite existing research, a significant knowledge gap remains in operational challenges like model versioning, data traceability, and collaboration.
Our study aims to address this gap by analyzing 15,065 posts from developer forums and platforms.
We uncover 133 topics related to asset management challenges, grouped into 16 macro-topics, with software dependency, model deployment, and model training being the most discussed.
arXiv Detail & Related papers (2024-02-25T05:05:52Z) - Systematic Mapping Protocol -- UX Design role in software development
process [55.2480439325792]
We present a systematic mapping protocol for investigating the role of the UX designer in the software development process.
We define the research questions, scope, sources, search strategy, selection criteria, data extraction, and analysis methods that we will use to conduct the mapping study.
arXiv Detail & Related papers (2024-02-20T16:56:46Z) - Code Recommendation for Open Source Software Developers [32.181023933552694]
CODER is a novel graph-based code recommendation framework for open source software developers.
Our framework achieves superior performance under various experimental settings, including intra-project, cross-project, and cold-start recommendation.
arXiv Detail & Related papers (2022-10-15T16:40:36Z) - Towards Automated Process Planning and Mining [77.34726150561087]
We present a research project in which researchers from the AI and BPM field work jointly together.
We discuss the overall research problem, the relevant fields of research and our overall research framework to automatically derive process models.
arXiv Detail & Related papers (2022-08-18T16:41:22Z) - Dynamic Feature Integration for Simultaneous Detection of Salient
Object, Edge and Skeleton [108.01007935498104]
In this paper, we solve three low-level pixel-wise vision problems, including salient object segmentation, edge detection, and skeleton extraction.
We first show some similarities shared by these tasks and then demonstrate how they can be leveraged for developing a unified framework.
arXiv Detail & Related papers (2020-04-18T11:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.