論文の概要: DiSciPLE: Learning Interpretable Programs for Scientific Visual Discovery
- arxiv url: http://arxiv.org/abs/2502.10060v1
- Date: Fri, 14 Feb 2025 10:26:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:08.943486
- Title: DiSciPLE: Learning Interpretable Programs for Scientific Visual Discovery
- Title(参考訳): DiSciple:科学的な視覚発見のための解釈可能なプログラムを学習する
- Authors: Utkarsh Mall, Cheng Perng Phoo, Mia Chiquier, Bharath Hariharan, Kavita Bala, Carl Vondrick,
- Abstract要約: 優れた意思決定を可能にするため、科学的推論において優れた解釈が重要である。
本稿では,ニューラルネットワークをインターリーブする学習プログラムを用いて,そのような解釈可能な設計モデルを得るための自動手法を提案する。
本稿では,大言語モデル (LLM) の常識と事前知識を活用する進化的アルゴリズムであるDiSciPLEを提案し,視覚データを説明するPythonプログラムを作成する。
- 参考スコア(独自算出の注目度): 61.02102713094486
- License:
- Abstract: Visual data is used in numerous different scientific workflows ranging from remote sensing to ecology. As the amount of observation data increases, the challenge is not just to make accurate predictions but also to understand the underlying mechanisms for those predictions. Good interpretation is important in scientific workflows, as it allows for better decision-making by providing insights into the data. This paper introduces an automatic way of obtaining such interpretable-by-design models, by learning programs that interleave neural networks. We propose DiSciPLE (Discovering Scientific Programs using LLMs and Evolution) an evolutionary algorithm that leverages common sense and prior knowledge of large language models (LLMs) to create Python programs explaining visual data. Additionally, we propose two improvements: a program critic and a program simplifier to improve our method further to synthesize good programs. On three different real-world problems, DiSciPLE learns state-of-the-art programs on novel tasks with no prior literature. For example, we can learn programs with 35% lower error than the closest non-interpretable baseline for population density estimation.
- Abstract(参考訳): 視覚データは、リモートセンシングから生態学まで、さまざまな科学的ワークフローで使用されている。
観測データの量が増加するにつれて、正確な予測を行うだけでなく、それらの予測の基盤となるメカニズムを理解することが課題となる。
優れた解釈は、データに対する洞察を提供することで、より良い意思決定を可能にするため、科学的なワークフローにおいて重要である。
本稿では,ニューラルネットワークをインターリーブする学習プログラムを用いて,そのような解釈可能な設計モデルを得るための自動手法を提案する。
大規模言語モデル (LLM) の常識と事前知識を活用する進化的アルゴリズムであるDiSciPLE (LLMとEvolutionを用いた科学プログラムの発見) を提案し,ビジュアルデータを説明するPythonプログラムを作成する。
さらに,プログラム評論家とプログラム単純化者という2つの改良点を提案し,優れたプログラムを合成する手法をさらに改良する。
現実世界の3つの問題に関して、DiScipleは先行文献のない新しいタスクに関する最先端のプログラムを学習する。
例えば、人口密度推定に最も近い非解釈可能な基準線よりも35%低い誤差のプログラムを学習することができる。
関連論文リスト
- Statistical investigations into the geometry and homology of random programs [0.2302001830524133]
本稿では,チャットGPTから生成したランダムなPythonプログラム間の関係を幾何学的・トポロジ的に記述する方法について述べる。
本稿では,ChatGPT-4とTinyLlamaを画像処理に関する簡単な問題で比較する。
将来、我々のアプローチはプログラミング言語の構造に新たな洞察を与えるかもしれないと推測する。
論文 参考訳(メタデータ) (2024-07-05T20:25:02Z) - PERFOGRAPH: A Numerical Aware Program Graph Representation for
Performance Optimization and Program Analysis [12.778336318809092]
最新の機械学習メソッドを採用する上で重要な課題は、プログラミング言語の表現である。
本稿では,現在のプログラム表現の限界と課題を克服するため,PERFOGRAPHと呼ばれるグラフベースのプログラム表現を提案する。
PerFOGRAPHは、新しいノードとエッジを導入することで、数値情報と集約データ構造をキャプチャできる。
論文 参考訳(メタデータ) (2023-05-31T21:59:50Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Self-supervised on Graphs: Contrastive, Generative,or Predictive [25.679620842010422]
SSL(Self-supervised Learning)は、よく設計されたプリテキストタスクを通じて有益な知識を抽出するための新しいパラダイムとして登場しています。
既存のグラフSSLメソッドは、コントラスト、生成、予測の3つのカテゴリに分けられる。
また、一般的なデータセット、評価メトリクス、下流タスク、さまざまなアルゴリズムのオープンソース実装をまとめています。
論文 参考訳(メタデータ) (2021-05-16T03:30:03Z) - How could Neural Networks understand Programs? [67.4217527949013]
ソースコードにnlpプリトレーニング技術を直接適用するか、あるいはtheshelfによってモデルに機能を追加するかで、プログラムをより理解するためのモデルを構築するのは難しい。
本研究では,(1)操作セマンティクスの基本操作とよく一致する表現と(2)環境遷移の情報からなる情報から,モデルが学ぶべき新しいプログラムセマンティクス学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-05-10T12:21:42Z) - Reprogramming Language Models for Molecular Representation Learning [65.00999660425731]
本稿では,分子学習タスクのための事前学習言語モデルに対して,辞書学習(R2DL)による表現再プログラミングを提案する。
対比プログラムは、k-SVDソルバを用いて、高密度ソースモデル入力空間(言語データ)とスパースターゲットモデル入力空間(例えば、化学および生物学的分子データ)との間の線形変換を学習する。
R2DLは、ドメイン固有のデータに基づいて訓練されたアート毒性予測モデルの状態によって確立されたベースラインを達成し、限られたトレーニングデータ設定でベースラインを上回る。
論文 参考訳(メタデータ) (2020-12-07T05:50:27Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
本研究では,ホメオモルフィズムがマルウェアのトラフィックデータセットの学習表現に与える影響について検討する。
この結果から,学習された表現の詳細と,すべてのパラメータの多様体上で定義された特定の座標系は,関数近似とは全く異なることが示唆された。
論文 参考訳(メタデータ) (2020-09-16T15:37:44Z) - Advancing Visual Specification of Code Requirements for Graphs [0.0]
本稿では,機械学習を用いた有意義なデータの可視化に焦点をあてる。
我々は、人文科学研究者が視覚化のプログラム方法を学ぶための障壁を低くするために、ユーザが視覚的にコード要件を指定できるようにします。
ニューラルネットワークと光学文字認識を組み合わせたハイブリッドモデルを用いて、コードを生成して視覚化する。
論文 参考訳(メタデータ) (2020-07-29T17:01:53Z) - Learning to learn generative programs with Memoised Wake-Sleep [52.439550543743536]
本研究では,ニューラルネットワークをシンボル型データ生成プログラムの前提として,推論と先行の両方に使用するニューロシンボリック生成モデルのクラスについて検討する。
そこで本研究では,Wake Sleepを拡張したMemoised Wake-Sleep(MWS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-06T23:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。