論文の概要: Representation Learning on Out of Distribution in Tabular Data
- arxiv url: http://arxiv.org/abs/2502.10095v1
- Date: Fri, 14 Feb 2025 11:36:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:45:03.033300
- Title: Representation Learning on Out of Distribution in Tabular Data
- Title(参考訳): 語彙データにおける分布外表現学習
- Authors: Achmad Ginanjar, Xue Li, Priyanka Singh, Wen Hua,
- Abstract要約: 本稿では,標準CPUハードウェア上で効率よく動作する軽量で効率的なソリューションTCLを提案する。
FT-Transformer や ResNet など,TCL が既存のモデルよりも優れていることを示す。
また,本研究では,簡単な実験と可視化によるOODデータの検出と評価の実践的ガイダンスも提供する。
- 参考スコア(独自算出の注目度): 11.930322590346139
- License:
- Abstract: The open-world assumption in model development suggests that a model might lack sufficient information to adequately handle data that is entirely distinct or out of distribution (OOD). While deep learning methods have shown promising results in handling OOD data through generalization techniques, they often require specialized hardware that may not be accessible to all users. We present TCL, a lightweight yet effective solution that operates efficiently on standard CPU hardware. Our approach adapts contrastive learning principles specifically for tabular data structures, incorporating full matrix augmentation and simplified loss calculation. Through comprehensive experiments across 10 diverse datasets, we demonstrate that TCL outperforms existing models, including FT-Transformer and ResNet, particularly in classification tasks, while maintaining competitive performance in regression problems. TCL achieves these results with significantly reduced computational requirements, making it accessible to users with limited hardware capabilities. This study also provides practical guidance for detecting and evaluating OOD data through straightforward experiments and visualizations. Our findings show that TCL offers a promising balance between performance and efficiency in handling OOD prediction tasks, which is particularly beneficial for general machine learning practitioners working with computational constraints.
- Abstract(参考訳): モデル開発におけるオープンワールドの仮定は、モデルは完全に異なる、あるいは分布外であるデータ(OOD)を適切に扱うのに十分な情報がないことを示唆している。
ディープラーニングの手法は、OODデータを一般化技術で処理する上で有望な結果を示しているが、全ユーザにはアクセスできない特殊なハードウェアを必要とすることが多い。
本稿では,標準CPUハードウェア上で効率よく動作する軽量で効率的なソリューションTCLを提案する。
本手法は,グラフデータ構造に特化して対照的な学習原理を適用し,完全行列拡張と損失計算の簡易化を図っている。
FT-Transformer や ResNet などの既存モデル,特に分類タスクにおいて,TCL がレグレッション問題における競合性能を維持しながら,総合的な10種類のデータセットを対象とした実験により,TCL が既存モデルより優れていることを示す。
TCLは計算要求を大幅に減らしてこれらの結果を達成し、限られたハードウェア機能を持つユーザに対してアクセスできるようにする。
また,本研究では,簡単な実験と可視化によるOODデータの検出と評価の実践的ガイダンスも提供する。
この結果から,TCL は OOD 予測タスクの処理における性能と効率の両立が期待できることを示した。
関連論文リスト
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - Adaptive Data Exploitation in Deep Reinforcement Learning [50.53705050673944]
深層強化学習(RL)における**データ効率**と**一般化**を強化する強力なフレームワークであるADEPTを紹介する。
具体的には、ADEPTはマルチアーム・バンディット(MAB)アルゴリズムを用いて、異なる学習段階にわたるサンプルデータの使用を適応的に管理する。
Procgen、MiniGrid、PyBulletなどのベンチマークでADEPTをテストする。
論文 参考訳(メタデータ) (2025-01-22T04:01:17Z) - TabDPT: Scaling Tabular Foundation Models [20.00390825519329]
実データによる性能向上と一般化の方法を示す。
本モデルでは,CC18(分類)およびCTR23(回帰)ベンチマークの最先端性能を実現する。
TabDPTはまた、モデルのサイズと利用可能なデータの量の両方が増加するにつれて、強力なスケーリングを示す。
論文 参考訳(メタデータ) (2024-10-23T18:00:00Z) - Distributionally robust self-supervised learning for tabular data [2.942619386779508]
エラースライスの存在下での堅牢な表現の学習は、高い濃度特徴とエラーセットの構築の複雑さのために困難である。
従来の堅牢な表現学習手法は、コンピュータビジョンにおける教師付き設定における最悪のグループパフォーマンスの改善に主に焦点をあてている。
提案手法は,Masked Language Modeling (MLM) の損失を学習したエンコーダ・デコーダモデルを用いて,頑健な潜在表現を学習する。
論文 参考訳(メタデータ) (2024-10-11T04:23:56Z) - What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
大規模なデータ不均衡は、Webスケールの視覚言語データセットの間に自然に存在する。
事前学習したCLIPは、教師付き学習と比較してデータ不均衡に顕著な堅牢性を示す。
CLIPの堅牢性と差別性は、より記述的な言語監督、より大きなデータスケール、より広いオープンワールドの概念によって改善される。
論文 参考訳(メタデータ) (2024-05-31T17:57:24Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Learnability of Learning Performance and Its Application to Data
Valuation [11.78594243870616]
ほとんどの機械学習(ML)タスクでは、与えられたデータセットで学習パフォーマンスを評価するには、集中的な計算が必要である。
学習性能を効率的に推定する能力は、アクティブラーニング、データ品質管理、データバリュエーションといった幅広いアプリケーションに恩恵をもたらす可能性がある。
最近の実証研究では、多くの一般的なMLモデルに対して、少量のサンプルを用いて任意の入力データセットの学習性能を予測するパラメトリックモデルを正確に学習できることが示されている。
論文 参考訳(メタデータ) (2021-07-13T18:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。