Physics-Informed Generative Modeling of Wireless Channels
- URL: http://arxiv.org/abs/2502.10137v1
- Date: Fri, 14 Feb 2025 13:05:48 GMT
- Title: Physics-Informed Generative Modeling of Wireless Channels
- Authors: Benedikt Böck, Andreas Oeldemann, Timo Mayer, Francesco Rossetto, Wolfgang Utschick,
- Abstract summary: We propose a model that combines the physics-related compressibility of wireless channels with sparse Bayesian generative modeling (SBGM)
Our method can learn from compressed observations received by an access point (AP) during default online operation.
It is physically interpretable and generalizes to arbitrary system configurations without requiring retraining.
- Score: 7.394776649238597
- License:
- Abstract: Learning the distribution of the wireless channel within a specific environment of interest is essential to exploit the full potential of machine learning (ML) for wireless communications and radar applications. Generative modeling offers a promising framework to address this problem. However, existing approaches pose unresolved challenges, including the need for high-quality training data, limited generalizability, and a lack of physical interpretability. To address these issues, we propose a model that combines the physics-related compressibility of wireless channels with sparse Bayesian generative modeling (SBGM) to learn the distribution of the underlying physical channel parameters. By leveraging the sparsity-inducing characteristics of SBGM, our method can learn from compressed observations received by an access point (AP) during default online operation. Moreover, it is physically interpretable and generalizes to arbitrary system configurations without requiring retraining.
Related papers
- Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Reliable Beamforming at Terahertz Bands: Are Causal Representations the
Way Forward? [85.06664206117088]
Multi-user wireless systems can meet metaverse requirements by utilizing terahertz bandwidth with massive number of antennas.
Existing solutions lack proper modeling of channel dynamics, resulting in inaccurate beamforming solutions in high-mobility scenarios.
Herein, a dynamic, semantically aware beamforming solution is proposed for the first time, utilizing novel artificial intelligence algorithms in variational causal inference.
arXiv Detail & Related papers (2023-03-14T16:02:46Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Federated Dynamic Spectrum Access [29.302039892247787]
We introduce a Federated Learning (FL) based framework for the task of Dynamic Spectrum Access (DSA)
FL is a distributive machine learning framework that can reserve the privacy of network terminals under heterogeneous data distributions.
arXiv Detail & Related papers (2021-06-28T20:49:41Z) - Making Intelligent Reflecting Surfaces More Intelligent: A Roadmap
Through Reservoir Computing [31.555956425625254]
This article introduces a neural network-based signal processing framework for intelligent reflecting surface (IRS) aided wireless communications systems.
By modeling radio-frequency (RF) impairments inside the "meta-atoms" of IRS, we present an approach that generalizes the entire IRS-aided system as a reservoir computing (RC) system.
arXiv Detail & Related papers (2021-02-06T23:55:46Z) - Harnessing Wireless Channels for Scalable and Privacy-Preserving
Federated Learning [56.94644428312295]
Wireless connectivity is instrumental in enabling federated learning (FL)
Channel randomnessperturbs each worker inversions model update while multiple workers updates incur significant interference on bandwidth.
In A-FADMM, all workers upload their model updates to the parameter server using a single channel via analog transmissions.
This not only saves communication bandwidth, but also hides each worker's exact model update trajectory from any eavesdropper.
arXiv Detail & Related papers (2020-07-03T16:31:15Z) - Predicting the Path Loss of Wireless Channel Models Using Machine
Learning Techniques in MmWave Urban Communications [13.026091318474785]
Classic wireless communication channel modeling is performed using Deterministic and channel methodologies.
Machine learning (ML) emerges to revolutionize system design for 5G and beyond.
arXiv Detail & Related papers (2020-05-02T08:19:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.