論文の概要: MathConstruct: Challenging LLM Reasoning with Constructive Proofs
- arxiv url: http://arxiv.org/abs/2502.10197v1
- Date: Fri, 14 Feb 2025 14:44:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:46:15.220277
- Title: MathConstruct: Challenging LLM Reasoning with Constructive Proofs
- Title(参考訳): MathConstruct: コンストラクティブな証明によるLLM推論
- Authors: Mislav Balunović, Jasper Dekoninck, Nikola Jovanović, Ivo Petrov, Martin Vechev,
- Abstract要約: mcは、様々な数学コンペから得られた126の課題の新しいベンチマークである。
mcは、解の正確性を容易に検証できるため、大規模言語モデルの評価に適している。
- 参考スコア(独自算出の注目度): 0.9320657506524149
- License:
- Abstract: While Large Language Models (LLMs) demonstrate impressive performance in mathematics, existing math benchmarks come with significant limitations. Many focus on problems with fixed ground-truth answers, and are often saturated due to problem simplicity or the viability of guessing or memorization. Crucially, they capture only a narrow subset of relevant math problems. To address this research gap, we introduce \mc, a new benchmark of 126 challenging problems sourced from various math competitions, which targets constructive proofs, a widely encountered problem type requiring the construction of mathematical objects with specific properties. These proofs are particularly suitable for LLM evaluation, as solution correctness can be easily verified. Our automated verifiers also enable MathConstruct to generate problem variations, used to evaluate robustness. State-of-the-art LLMs solve only 54% of MathConstruct problems, highlighting its complexity and importance for LLM evaluation.
- Abstract(参考訳): 大規模言語モデル(LLM)は数学における優れた性能を示す一方で、既存の数学ベンチマークには大きな制限がある。
多くの問題は固定された接地真実解の問題に焦点を合わせており、多くの場合、問題の単純さや推測や記憶の生存可能性のために飽和している。
重要なことに、それらは関連する数学問題のごく一部しか捉えていない。
この研究ギャップに対処するため,様々な数学コンペから得られた126個の問題に対する新しいベンチマークである \mc を紹介した。
これらの証明は、解の正確性を容易に検証できるため、特にLLM評価に適している。
我々の自動検証器は、ロバスト性を評価するために使用される問題変動をMathConstructが生成することを可能にする。
最先端のLLMはMathConstruct問題の54%しか解決せず、LLM評価の複雑さと重要性を強調している。
関連論文リスト
- MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
各種モデルにおけるMATH-P-Hardの性能低下を観察する。
また、学習した問題解決スキルを盲目的に適用する新しい形態の記憶に関する懸念も提起する。
論文 参考訳(メタデータ) (2025-02-10T13:31:46Z) - MathGAP: Out-of-Distribution Evaluation on Problems with Arbitrarily Complex Proofs [80.96119560172224]
MathGAPは、それらの算術的証明構造に関する仕様に従って、問題文と連鎖推論トレースを生成する。
MathGAP を用いて, LLM はより深く, より広くなるにつれて, 性能が著しく低下することがわかった。
論文 参考訳(メタデータ) (2024-10-17T12:48:14Z) - HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
本稿では,解析的近似技術を必要とする応用数学問題に挑戦するデータセットであるHARDMathを紹介する。
本フレームワークは,数値基底真理に対して検証された解を用いて,多数の問題を自動生成する。
HARDMath-miniは,366問題からなるサブサンプルテストセットであり,応用科学の文脈で定式化された40の単語問題に対して,オープンソースLLMとクローズドソースLLMの両方を評価する。
論文 参考訳(メタデータ) (2024-10-13T20:09:41Z) - MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHayは、LLMの長文数学的推論能力を評価するために設計された自動ベンチマークである。
我々は,8つのトップパフォーマンスモデルの長文数学的推論能力を評価するために,MathHayの広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-07T02:30:07Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
小学校数学におけるLLMの解答能力の深さについて検討する。
既存の数式語問題に対して,それらの性能を併用して評価する。
論文 参考訳(メタデータ) (2024-10-02T17:01:10Z) - MathCAMPS: Fine-grained Synthesis of Mathematical Problems From Human Curricula [33.5782208232163]
本研究では,高品質な数学問題を大規模に合成する手法であるMath CAMPSを提案する。
それぞれの標準を形式文法でエンコードし、様々な記号問題とその解をサンプリングする。
我々は、記号構造からフォローアップ質問を導き、それらをフォローアップ単語問題に変換する。
論文 参考訳(メタデータ) (2024-07-01T01:56:28Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
大規模言語モデル(LLM)は、非常に高度な自然言語理解を持ち、強力な問題解決能力を示した。
本稿では,新たに開発された"MathOdyssey"データセットを用いて,LLMの数学的問題解決能力について検討する。
論文 参考訳(メタデータ) (2024-06-26T13:02:35Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
大規模言語モデル (LLM) は算術的推論タスクを解く際の性能に制限がある。
MathPrompterはZero-shot-of- Thoughtプロンプト技術を使って複数の代数式やPython関数を生成し、異なる方法で同じ数学問題を解く。
論文 参考訳(メタデータ) (2023-03-04T04:43:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。