MathConstruct: Challenging LLM Reasoning with Constructive Proofs
- URL: http://arxiv.org/abs/2502.10197v1
- Date: Fri, 14 Feb 2025 14:44:22 GMT
- Title: MathConstruct: Challenging LLM Reasoning with Constructive Proofs
- Authors: Mislav Balunović, Jasper Dekoninck, Nikola Jovanović, Ivo Petrov, Martin Vechev,
- Abstract summary: mc is a new benchmark of 126 challenging problems sourced from various math competitions.
mc is suitable for Large Language Models evaluation, as solution correctness can be easily verified.
- Score: 0.9320657506524149
- License:
- Abstract: While Large Language Models (LLMs) demonstrate impressive performance in mathematics, existing math benchmarks come with significant limitations. Many focus on problems with fixed ground-truth answers, and are often saturated due to problem simplicity or the viability of guessing or memorization. Crucially, they capture only a narrow subset of relevant math problems. To address this research gap, we introduce \mc, a new benchmark of 126 challenging problems sourced from various math competitions, which targets constructive proofs, a widely encountered problem type requiring the construction of mathematical objects with specific properties. These proofs are particularly suitable for LLM evaluation, as solution correctness can be easily verified. Our automated verifiers also enable MathConstruct to generate problem variations, used to evaluate robustness. State-of-the-art LLMs solve only 54% of MathConstruct problems, highlighting its complexity and importance for LLM evaluation.
Related papers
- MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
We observe significant performance drops on MATH-P-Hard across various models.
We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills.
arXiv Detail & Related papers (2025-02-10T13:31:46Z) - MathGAP: Out-of-Distribution Evaluation on Problems with Arbitrarily Complex Proofs [80.96119560172224]
MathGAP generates problem statements and chain-of-thought reasoning traces according to specifications about their arithmetic proof structure.
Using MathGAP, we find that LLMs show a significant decrease in performance as proofs get deeper and wider.
arXiv Detail & Related papers (2024-10-17T12:48:14Z) - HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
We introduce HARDMath, a dataset featuring challenging applied mathematics problems that require analytical approximation techniques.
Our framework auto-generates a large number of problems with solutions validated against numerical ground truths.
We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts.
arXiv Detail & Related papers (2024-10-13T20:09:41Z) - MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHay is an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs.
We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing models.
arXiv Detail & Related papers (2024-10-07T02:30:07Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
We study the depth of grade-school math problem-solving capabilities of LLMs.
We evaluate their performance on pairs of existing math word problems together.
arXiv Detail & Related papers (2024-10-02T17:01:10Z) - MathCAMPS: Fine-grained Synthesis of Mathematical Problems From Human Curricula [33.5782208232163]
We propose Math CAMPS: a method to synthesize high-quality mathematical problems at scale.
We encode each standard in a formal grammar, allowing us to sample diverse symbolic problems and their answers.
We derive follow-up questions from symbolic structures and convert them into follow-up word problems.
arXiv Detail & Related papers (2024-07-01T01:56:28Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities.
This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset.
arXiv Detail & Related papers (2024-06-26T13:02:35Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
arXiv Detail & Related papers (2024-05-20T17:52:29Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks.
MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways.
arXiv Detail & Related papers (2023-03-04T04:43:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.