AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence
- URL: http://arxiv.org/abs/2502.10203v1
- Date: Fri, 14 Feb 2025 14:56:58 GMT
- Title: AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence
- Authors: Zhijie Cai, Xiaowen Cao, Xu Chen, Yuanhao Cui, Guangxu Zhu, Kaibin Huang, Shuguang Cui,
- Abstract summary: We propose a framework that enhances edge intelligence through AI-in-the-loop joint sensing and communication.
A key contribution of our work is establishing an explicit relationship between validation loss and the system's tunable parameters.
We show that our framework reduces communication energy consumption by up to 77 percent and sensing costs measured by the number of samples by up to 52 percent.
- Score: 65.29835430845893
- License:
- Abstract: Recent breakthroughs in artificial intelligence (AI), wireless communications, and sensing technologies have accelerated the evolution of edge intelligence. However, conventional systems still grapple with issues such as low communication efficiency, redundant data acquisition, and poor model generalization. To overcome these challenges, we propose an innovative framework that enhances edge intelligence through AI-in-the-loop joint sensing and communication (JSAC). This framework features an AI-driven closed-loop control architecture that jointly optimizes system resources, thereby delivering superior system-level performance. A key contribution of our work is establishing an explicit relationship between validation loss and the system's tunable parameters. This insight enables dynamic reduction of the generalization error through AI-driven closed-loop control. Specifically, for sensing control, we introduce an adaptive data collection strategy based on gradient importance sampling, allowing edge devices to autonomously decide when to terminate data acquisition and how to allocate sample weights based on real-time model feedback. For communication control, drawing inspiration from stochastic gradient Langevin dynamics (SGLD), our joint optimization of transmission power and batch size converts channel and data noise into gradient perturbations that help mitigate overfitting. Experimental evaluations demonstrate that our framework reduces communication energy consumption by up to 77 percent and sensing costs measured by the number of collected samples by up to 52 percent while significantly improving model generalization -- with up to 58 percent reductions of the final validation loss. It validates that the proposed scheme can harvest the mutual benefit of AI and JSAC systems by incorporating the model itself into the control loop of the system.
Related papers
- Distributed Collaborative Inference System in Next-Generation Networks and Communication [12.372334028925618]
High computational demands of generative artificial intelligence (GAI) present challenges for devices with limited resources.
We introduce a multi-level collaborative inference system designed for next-generation networks and communication.
Our system can reduce inference time by up to 17% without sacrificing the inference accuracy.
arXiv Detail & Related papers (2024-11-16T10:48:12Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Effective Communication with Dynamic Feature Compression [25.150266946722]
We study a prototypal system in which an observer must communicate its sensory data to a robot controlling a task.
We consider an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
We tested the proposed approach on the well-known CartPole reference control problem, obtaining a significant performance increase.
arXiv Detail & Related papers (2024-01-29T15:35:05Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage.
Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.
arXiv Detail & Related papers (2023-12-11T08:36:27Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
A novel joint sensing, communication, and artificial intelligence (AI) framework is proposed so as to optimize extended reality (XR) experiences over terahertz (THz) wireless systems.
arXiv Detail & Related papers (2023-04-29T00:39:50Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression [23.36744348465991]
Coordination of robotic swarms and the remote wireless control of industrial systems are among the major use cases for 5G and beyond systems.
In this work, we consider a prototypal system in which an observer must communicate its sensory data to an actor controlling a task.
We propose an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
arXiv Detail & Related papers (2023-01-14T11:43:56Z) - Deep Learning for Wireless Networked Systems: a joint
Estimation-Control-Scheduling Approach [47.29474858956844]
Wireless networked control system (WNCS) connecting sensors, controllers, and actuators via wireless communications is a key enabling technology for highly scalable and low-cost deployment of control systems in the Industry 4.0 era.
Despite the tight interaction of control and communications in WNCSs, most existing works adopt separative design approaches.
We propose a novel deep reinforcement learning (DRL)-based algorithm for controller and optimization utilizing both model-free and model-based data.
arXiv Detail & Related papers (2022-10-03T01:29:40Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.