論文の概要: Looking around you: external information enhances representations for event sequences
- arxiv url: http://arxiv.org/abs/2502.10205v1
- Date: Fri, 14 Feb 2025 14:59:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:44:57.580753
- Title: Looking around you: external information enhances representations for event sequences
- Title(参考訳): 周りを見回す:外部情報によってイベントシーケンスの表現が強化される
- Authors: Maria Kovaleva, Petr Sokerin, Sofia Krehova, Alexey Zaytsev,
- Abstract要約: 本稿では,複数のユーザ表現から情報を集約する手法を提案する。
本研究は,単純なプール技術からトレーニング可能な注意に基づくアプローチまで,多様なアグリゲーションアプローチについて考察する。
提案手法は,既存のエンコーダ上で動作し,その効率的な微調整を支援する。
- 参考スコア(独自算出の注目度): 2.1879059908547482
- License:
- Abstract: Representation learning produces models in different domains, such as store purchases, client transactions, and general people's behaviour. However, such models for sequential data usually process a single sequence, ignoring context from other relevant ones, even in domains with rapidly changing external environments like finance or misguiding the prediction for a user with no recent events. We are the first to propose a method that aggregates information from multiple user representations augmenting a specific user one for a scenario of multiple co-occurring event sequences. Our study considers diverse aggregation approaches, ranging from simple pooling techniques to trainable attention-based approaches, especially Kernel attention aggregation, that can highlight more complex information flow from other users. The proposed method operates atop an existing encoder and supports its efficient fine-tuning. Across considered datasets of financial transactions and downstream tasks, Kernel attention improves ROC AUC scores, both with and without fine-tuning, while mean pooling yields a smaller but still significant gain.
- Abstract(参考訳): 表現学習は、ストア購入、クライアントトランザクション、一般の人々の振る舞いなど、さまざまなドメインでモデルを生成する。
しかしながら、シーケンシャルデータに対するそのようなモデルは、金融のような急速に変化する外部環境や、最近のイベントのないユーザの予測を誤るドメインであっても、他の関連するものからコンテキストを無視して、単一のシーケンスを処理する。
我々は,複数の同時発生イベントシーケンスのシナリオに対して,複数のユーザ表現から情報を集約する手法を最初に提案する。
本研究では,単純なプール技術からトレーニング可能な注意に基づくアプローチ,特にKernelアテンションアグリゲーションまで,さまざまなアグリゲーションアプローチについて検討した。
提案手法は,既存のエンコーダ上で動作し,その効率的な微調整を支援する。
金融トランザクションと下流タスクのデータセットを考慮し、Kernel氏はROC AUCスコアを微調整と無調整の両方で改善した。
関連論文リスト
- Multimodal Difference Learning for Sequential Recommendation [5.243083216855681]
ユーザの関心とアイテムの関係は、さまざまなモダリティによって異なる、と我々は主張する。
本稿では,MDSRec のシークエンシャルレコメンデーションのための新しいマルチモーダルラーニングフレームワークを提案する。
5つの実世界のデータセットの結果は、最先端のベースラインよりもMDSRecの方が優れていることを示している。
論文 参考訳(メタデータ) (2024-12-11T05:08:19Z) - Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
クリックスルーレート(CTR)の予測は、オンラインパーソナライズプラットフォームにとって不可欠である。
近年の進歩は、リッチなユーザの振る舞いをモデル化することで、CTR予測の性能を大幅に改善できることを示している。
マルチグラニュラリティ興味検索ネットワーク(MIRRN)を提案する。
論文 参考訳(メタデータ) (2024-11-22T15:29:05Z) - Uniting contrastive and generative learning for event sequences models [51.547576949425604]
本研究では,2つの自己指導型学習手法 – 例えば,コントラスト学習と,潜在空間におけるマスクイベントの復元に基づく生成的アプローチ – の統合について検討する。
いくつかの公開データセットで行った実験は、シーケンス分類と次点型予測に焦点を合わせ、統合された手法が個々の手法と比較して優れた性能を達成することを示した。
論文 参考訳(メタデータ) (2024-08-19T13:47:17Z) - Sample Enrichment via Temporary Operations on Subsequences for Sequential Recommendation [15.718287580146272]
本稿では,SETO(Subsequences on Subsequences)を用いたサンプルエンリッチメントという,シーケンシャルレコメンデーションのための新しいモデルに依存しない高汎用フレームワークを提案する。
複数の実世界のデータセットにまたがる、複数の代表的および最先端のシーケンシャルレコメンデーションモデルに対するSETOの有効性と汎用性を強調します。
論文 参考訳(メタデータ) (2024-07-25T06:22:08Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Enhancing Few-shot NER with Prompt Ordering based Data Augmentation [59.69108119752584]
本稿では,PODA(Prompt Ordering Based Data Augmentation)手法を提案する。
3つのパブリックNERデータセットの実験結果とさらなる分析により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-19T16:25:43Z) - Towards Lightweight Cross-domain Sequential Recommendation via External
Attention-enhanced Graph Convolution Network [7.1102362215550725]
クロスドメインシークエンシャルレコメンデーション(CSR)は、複数のドメインからのインタラクションをモデル化することで、重複したユーザの振る舞いパターンの進化を描いている。
上記の課題,すなわちLEA-GCNを解決するために,軽量な外部注意強化GCNベースのフレームワークを導入する。
フレームワークの構造をさらに緩和し、ユーザ固有のシーケンシャルパターンを集約するために、新しい二重チャネル外部注意(EA)コンポーネントを考案する。
論文 参考訳(メタデータ) (2023-02-07T03:06:29Z) - Time Interval-enhanced Graph Neural Network for Shared-account
Cross-domain Sequential Recommendation [44.34610028544989]
共有アカウント クロスドメイン シークエンシャルレコメンデーション(SCSR)タスクは、複数のドメインにおける混合ユーザ動作を活用することで、次の項目を推奨することを目的としている。
既存のSCSRの研究は主に、リカレントニューラルネットワーク(RNN)ベースのモデルによるシーケンシャルパターンのマイニングに依存している。
上記の課題に対処するために,新たなグラフベースのソリューションTiDA-GCNを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:06:01Z) - Neural Hierarchical Factorization Machines for User's Event Sequence
Analysis [21.13650689194003]
本稿では,ユーザのイベントシーケンス上の階層的情報を取得するための2段階構造について考察する。
我々のモデルは最先端のベースラインに比べて性能が大幅に向上する。
論文 参考訳(メタデータ) (2021-12-31T04:08:55Z) - Sparse-Interest Network for Sequential Recommendation [78.83064567614656]
本稿では,シーケンシャルレコメンデーションのためのtextbfSparse textbfInterest textbfNEtwork(SINE)を提案する。
我々のスパース関心モジュールは、大きなコンセプトプールから各ユーザに対してスパースの概念セットを適応的に推測することができる。
SINEは最先端の手法よりも大幅に改善できる。
論文 参考訳(メタデータ) (2021-02-18T11:03:48Z) - CoLES: Contrastive Learning for Event Sequences with Self-Supervision [63.3568071938238]
本研究では,実世界のユーザが生成する個別イベントシーケンスにおける自己教師型学習の課題に対処する。
従来,音声やコンピュータビジョンの領域で使われていたコントラスト学習に適応する新しい手法"CoLES"を提案する。
論文 参考訳(メタデータ) (2020-02-19T15:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。