SPIRIT: Short-term Prediction of solar IRradIance for zero-shot Transfer learning using Foundation Models
- URL: http://arxiv.org/abs/2502.10307v1
- Date: Fri, 14 Feb 2025 17:10:17 GMT
- Title: SPIRIT: Short-term Prediction of solar IRradIance for zero-shot Transfer learning using Foundation Models
- Authors: Aditya Mishra, Ravindra T, Srinivasan Iyengar, Shivkumar Kalyanaraman, Ponnurangam Kumaraguru,
- Abstract summary: We propose a novel approach leveraging foundation models for solar irradiance forecasting, making it applicable to newer solar installations.
Our approach outperforms state-of-the-art models in zero-shot transfer learning by about 70%, enabling effective performance at new locations without relying on any historical data.
- Score: 7.6430384355362735
- License:
- Abstract: Traditional solar forecasting models are based on several years of site-specific historical irradiance data, often spanning five or more years, which are unavailable for newer photovoltaic farms. As renewable energy is highly intermittent, building accurate solar irradiance forecasting systems is essential for efficient grid management and enabling the ongoing proliferation of solar energy, which is crucial to achieve the United Nations' net zero goals. In this work, we propose SPIRIT, a novel approach leveraging foundation models for solar irradiance forecasting, making it applicable to newer solar installations. Our approach outperforms state-of-the-art models in zero-shot transfer learning by about 70%, enabling effective performance at new locations without relying on any historical data. Further improvements in performance are achieved through fine-tuning, as more location-specific data becomes available. These findings are supported by statistical significance, further validating our approach. SPIRIT represents a pivotal step towards rapid, scalable, and adaptable solar forecasting solutions, advancing the integration of renewable energy into global power systems.
Related papers
- Data-driven Surface Solar Irradiance Estimation using Neural Operators at Global Scale [1.231476564107544]
This paper presents a pioneering approach to solar radiation forecasting using numerical weather prediction (NWP) and data-driven machine learning weather models.
Our model represents the first adaptive global framework capable of providing long-term SSI forecasts.
The improved accuracy of these forecasts has substantial implications for the integration of solar energy into power grids.
arXiv Detail & Related papers (2024-11-13T18:21:56Z) - Advanced simulation-based predictive modelling for solar irradiance sensor farms [0.5292801941204784]
This work introduces a novel framework named Cloud-based Analysis and Integration for Data Efficiency (CAIDE)
CAIDE is designed for real-time monitoring, management, and forecasting of solar irradiance sensor farms.
The framework has important implications for the deployment of solar plants and the future of renewable energy sources.
arXiv Detail & Related papers (2024-04-05T15:44:51Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
This paper presents the findings of the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling," held in 2021.
We present a comparison and evaluation of the seven highest-ranked solutions in the competition.
The winning method predicted different scenarios and optimized over all scenarios using a sample average approximation method.
arXiv Detail & Related papers (2022-12-21T02:34:12Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
We develop a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning.
Our model estimates a location's future solar irradiance based on satellite observations.
We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites.
arXiv Detail & Related papers (2021-12-28T03:13:44Z) - Toward Foundation Models for Earth Monitoring: Proposal for a Climate
Change Benchmark [95.19070157520633]
Recent progress in self-supervision shows that pre-training large neural networks on vast amounts of unsupervised data can lead to impressive increases in generalisation for downstream tasks.
Such models, recently coined as foundation models, have been transformational to the field of natural language processing.
We propose to develop a new benchmark comprised of a variety of downstream tasks related to climate change.
arXiv Detail & Related papers (2021-12-01T15:38:19Z) - Solar Irradiation Forecasting using Genetic Algorithms [0.0]
Solar energy is one of the most significant contributors to renewable energy.
For the effective management of electrical power grids, forecasting models that predict solar irradiation, with high accuracy, are needed.
The data used for training and validation is recorded from across three different geographical stations in the United States.
arXiv Detail & Related papers (2021-06-26T06:48:20Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
We report daily prediction of solar energy by exploiting the strength of machine learning techniques.
Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented.
It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes.
arXiv Detail & Related papers (2020-10-25T17:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.