Solar Irradiation Forecasting using Genetic Algorithms
- URL: http://arxiv.org/abs/2106.13956v1
- Date: Sat, 26 Jun 2021 06:48:20 GMT
- Title: Solar Irradiation Forecasting using Genetic Algorithms
- Authors: V. Gunasekaran, K.K. Kovi, S. Arja and R. Chimata
- Abstract summary: Solar energy is one of the most significant contributors to renewable energy.
For the effective management of electrical power grids, forecasting models that predict solar irradiation, with high accuracy, are needed.
The data used for training and validation is recorded from across three different geographical stations in the United States.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Renewable energy forecasting is attaining greater importance due to its
constant increase in contribution to the electrical power grids. Solar energy
is one of the most significant contributors to renewable energy and is
dependent on solar irradiation. For the effective management of electrical
power grids, forecasting models that predict solar irradiation, with high
accuracy, are needed. In the current study, Machine Learning techniques such as
Linear Regression, Extreme Gradient Boosting and Genetic Algorithm Optimization
are used to forecast solar irradiation. The data used for training and
validation is recorded from across three different geographical stations in the
United States that are part of the SURFRAD network. A Global Horizontal Index
(GHI) is predicted for the models built and compared. Genetic Algorithm
Optimization is applied to XGB to further improve the accuracy of solar
irradiation prediction.
Related papers
- Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Solar Power Prediction Using Machine Learning [0.0]
This paper presents a machine learning-based approach for predicting solar power generation with high accuracy using a 99% AUC metric.
The approach includes data collection, pre-processing, feature selection, model selection, training, evaluation, and deployment.
The trained machine learning models are then deployed in a production environment, where they can be used to make real-time predictions about solar power generation.
arXiv Detail & Related papers (2023-03-11T06:31:46Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
This paper presents the findings of the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling," held in 2021.
We present a comparison and evaluation of the seven highest-ranked solutions in the competition.
The winning method predicted different scenarios and optimized over all scenarios using a sample average approximation method.
arXiv Detail & Related papers (2022-12-21T02:34:12Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
We develop a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning.
Our model estimates a location's future solar irradiance based on satellite observations.
We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites.
arXiv Detail & Related papers (2021-12-28T03:13:44Z) - Prediction of Solar Radiation Using Artificial Neural Network [0.0]
This paper presents an algorithm that can be used to predict an hourly activity of solar radiation.
The dataset consists of temperature of air, time, humidity, wind speed, atmospheric pressure, direction of wind and solar radiation data.
Two models are created to efficiently create a system capable of interpreting patterns through supervised learning data.
arXiv Detail & Related papers (2021-04-01T20:41:27Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
We report daily prediction of solar energy by exploiting the strength of machine learning techniques.
Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented.
It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes.
arXiv Detail & Related papers (2020-10-25T17:56:03Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.