Generalised Parallel Tempering: Flexible Replica Exchange via Flows and Diffusions
- URL: http://arxiv.org/abs/2502.10328v1
- Date: Fri, 14 Feb 2025 17:41:44 GMT
- Title: Generalised Parallel Tempering: Flexible Replica Exchange via Flows and Diffusions
- Authors: Leo Zhang, Peter Potaptchik, Arnaud Doucet, Hai-Dang Dau, Saifuddin Syed,
- Abstract summary: Generalised Parallel Tempering (GePT) allows for the incorporation of recent advances in modern generative modelling.
We show that GePT can improve sample quality and reduce the growth of computational resources required to handle complex distributions.
- Score: 25.670481267327453
- License:
- Abstract: Parallel Tempering (PT) is a classical MCMC algorithm designed for leveraging parallel computation to sample efficiently from high-dimensional, multimodal or otherwise complex distributions via annealing. One limitation of the standard formulation of PT is the growth of computational resources required to generate high-quality samples, as measured by effective sample size or round trip rate, for increasingly challenging distributions. To address this issue, we propose the framework: Generalised Parallel Tempering (GePT) which allows for the incorporation of recent advances in modern generative modelling, such as normalising flows and diffusion models, within Parallel Tempering, while maintaining the same theoretical guarantees as MCMC-based methods. For instance, we show that this allows us to utilise diffusion models in a parallelised manner, bypassing the usual computational cost of a large number of steps to generate quality samples. Further, we empirically demonstrate that GePT can improve sample quality and reduce the growth of computational resources required to handle complex distributions over the classical algorithm.
Related papers
- Annealing Flow Generative Model Towards Sampling High-Dimensional and Multi-Modal Distributions [6.992239210938067]
Annealing Flow is a continuous normalizing flow based approach designed to sample from high dimensional and multimodal distributions.
AF ensures effective and balanced mode exploration, achieves linear complexity in sample size and dimensions, and circumvents inefficient mixing times.
arXiv Detail & Related papers (2024-09-30T17:48:22Z) - Diffusion Generative Modelling for Divide-and-Conquer MCMC [0.0]
Divide-and-conquer MCMC is a strategy for parallelising Markov Chain Monte Carlo sampling.
We propose using diffusion generative modelling to fit density approximations to the subposterior distributions.
arXiv Detail & Related papers (2024-06-17T15:48:46Z) - Accelerating Multilevel Markov Chain Monte Carlo Using Machine Learning Models [0.0]
We present an efficient approach for accelerating multilevel Markov Chain Monte Carlo (MCMC) sampling for large-scale problems.
We use low-fidelity machine learning models for inexpensive evaluation of proposed samples.
Our technique is demonstrated on a standard benchmark inference problem in groundwater flow.
arXiv Detail & Related papers (2024-05-18T05:13:11Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
Common practice of learning latent space EBMs with non-convergent short-run MCMC for prior and posterior sampling is hindering the model from further progress.
We introduce a simple but effective diffusion-based amortization method for long-run MCMC sampling and develop a novel learning algorithm for the latent space EBM based on it.
arXiv Detail & Related papers (2023-10-05T00:23:34Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Reconstructing the Universe with Variational self-Boosted Sampling [7.922637707393503]
Traditional algorithms such as Hamiltonian Monte Carlo (HMC) are computationally inefficient due to generating correlated samples.
Here we develop a hybrid scheme called variational self-boosted sampling (VBS) to mitigate the drawbacks of both algorithms.
VBS generates better quality of samples than simple VI approaches and reduces the correlation length in the sampling phase by a factor of 10-50 over using only HMC.
arXiv Detail & Related papers (2022-06-28T21:30:32Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions [0.0]
Slice Sampling has emerged as a powerful Markov Chain Monte Carlo algorithm that adapts to the characteristics of the target distribution with minimal hand-tuning.
This paper introduces Ensemble Slice Sampling (ESS), a new class of algorithms that bypasses such difficulties by adaptively tuning the initial length scale.
These affine-invariant algorithms are trivial to construct, require no hand-tuning, and can easily be implemented in parallel computing environments.
arXiv Detail & Related papers (2020-02-14T19:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.