A Hybrid Swarm Intelligence Approach for Optimizing Multimodal Large Language Models Deployment in Edge-Cloud-based Federated Learning Environments
- URL: http://arxiv.org/abs/2502.10419v1
- Date: Tue, 04 Feb 2025 03:03:24 GMT
- Title: A Hybrid Swarm Intelligence Approach for Optimizing Multimodal Large Language Models Deployment in Edge-Cloud-based Federated Learning Environments
- Authors: Gaith Rjouba, Hanae Elmekki, Saidul Islam, Jamal Bentahar, Rachida Dssouli,
- Abstract summary: Federated Learning (FL), Multimodal Large Language Models (MLLMs), and edge-cloud computing enables distributed and real-time data processing.<n>We propose a novel hybrid framework wherein MLLMs are deployed on edge devices equipped with sufficient resources and battery life, while the majority of training occurs in the cloud.<n>Our experimental results show that the proposed method significantly improves system performance, achieving an accuracy of 92%, reducing communication cost by 30%, and enhancing client participation.
- Score: 10.72166883797356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The combination of Federated Learning (FL), Multimodal Large Language Models (MLLMs), and edge-cloud computing enables distributed and real-time data processing while preserving privacy across edge devices and cloud infrastructure. However, the deployment of MLLMs in FL environments with resource-constrained edge devices presents significant challenges, including resource management, communication overhead, and non-IID data. To address these challenges, we propose a novel hybrid framework wherein MLLMs are deployed on edge devices equipped with sufficient resources and battery life, while the majority of training occurs in the cloud. To identify suitable edge devices for deployment, we employ Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) is utilized to optimize the transmission of model updates between edge and cloud nodes. This proposed swarm intelligence-based framework aims to enhance the efficiency of MLLM training by conducting extensive training in the cloud and fine-tuning at the edge, thereby reducing energy consumption and communication costs. Our experimental results show that the proposed method significantly improves system performance, achieving an accuracy of 92%, reducing communication cost by 30%, and enhancing client participation compared to traditional FL methods. These results make the proposed approach highly suitable for large-scale edge-cloud computing systems.
Related papers
- PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing [48.30406812516552]
We introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimize model architecture and edge system constraints.
PLM employs a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint.
evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data.
arXiv Detail & Related papers (2025-03-15T15:11:17Z) - CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration [1.6021932740447968]
Large Language Models (LLMs) have achieved remarkable success in serving end-users with human-like intelligence.
LLMs demand high computational resources, making it challenging to deploy them to satisfy various performance objectives.
We introduce CE-CoLLM, a novel cloud-edge collaboration framework that supports efficient and adaptive LLM inference for end-users at the edge.
arXiv Detail & Related papers (2024-11-05T06:00:27Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Resource Allocation for Stable LLM Training in Mobile Edge Computing [11.366306689957353]
This paper explores a collaborative training framework that integrates mobile users with edge servers to optimize resource allocation.
We formulate a multi-objective optimization problem to minimize the total energy consumption and delay during training.
We also address the common issue of instability in model performance by incorporating stability enhancements into our objective function.
arXiv Detail & Related papers (2024-09-30T12:36:27Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices.
Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices.
We propose a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls.
Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design.
arXiv Detail & Related papers (2024-09-29T01:48:04Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Cloud-Device Collaborative Learning for Multimodal Large Language Models [24.65882336700547]
We introduce a Cloud-Device Collaborative Continual Adaptation framework to enhance the performance of compressed, device-deployed MLLMs.
Our framework is structured into three key components: a device-to-cloud uplink for efficient data transmission, cloud-based knowledge adaptation, and an optimized cloud-to-device downlink for model deployment.
arXiv Detail & Related papers (2023-12-26T18:46:14Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Accelerating Federated Learning over Reliability-Agnostic Clients in
Mobile Edge Computing Systems [15.923599062148135]
Federated learning has emerged as a promising privacy-preserving approach to facilitating AI applications.
It remains a big challenge to optimize the efficiency and effectiveness of FL when it is integrated with the MEC architecture.
In this paper, a multi-layer federated learning protocol called HybridFL is designed for the MEC architecture.
arXiv Detail & Related papers (2020-07-28T17:35:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.