Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization
- URL: http://arxiv.org/abs/2408.03631v2
- Date: Thu, 26 Dec 2024 02:14:28 GMT
- Title: Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization
- Authors: Yanhu Wang, Muhammad Muzammil Afzal, Zhengyang Li, Jie Zhou, Chenyuan Feng, Shuaishuai Guo, Tony Q. S. Quek,
- Abstract summary: Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
- Score: 62.16747639440893
- License:
- Abstract: Traditional base station siting (BSS) methods rely heavily on drive testing and user feedback, which are laborious and require extensive expertise in communication, networking, and optimization. As large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering, network optimization will witness a revolutionary approach. This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs, and the deployment of autonomous agents as a communication bridge to seamlessly connect the machine language based LLMs with human users using natural language. Furthermore, our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions, thereby enabling the customization and optimization of the BSS process. This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease. This research first develops a novel LLM-empowered BSS optimization framework, and heuristically proposes three different potential implementations: the strategies based on Prompt-optimized LLM (PoL), LLM-empowered autonomous BSS agent (LaBa), and Cooperative multiple LLM-based autonomous BSS agents (CLaBa). Through evaluation on real-world data, the experiments demonstrate that prompt-assisted LLMs and LLM-based agents can generate more efficient and reliable network deployments, noticeably enhancing the efficiency of BSS optimization and reducing trivial manual participation.
Related papers
- eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
Large Language Models (LLMs) herald a transformative era in artificial intelligence (AI)
This paper introduces an effective approach that enhances the operational efficiency and affordability of LLM inference.
arXiv Detail & Related papers (2024-11-24T22:50:02Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected.
Recent advancements enable end-to-end optimization of these parameters using an LLM.
This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Large Language Models for Power Scheduling: A User-Centric Approach [6.335540414370735]
We introduce a novel architecture for resource scheduling problems by converting an arbitrary user's voice request (VRQ) into a resource allocation vector.
Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an OP solving agent.
arXiv Detail & Related papers (2024-06-29T15:47:28Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - DOLLmC: DevOps for Large Language model Customization [0.0]
This research aims to establish a scalable and efficient framework for LLM customization.
We propose a robust framework that enhances continuous learning, seamless deployment, and rigorous version control of LLMs.
arXiv Detail & Related papers (2024-05-19T15:20:27Z) - LLMs as On-demand Customizable Service [8.440060524215378]
We introduce a concept of hierarchical, distributed Large Language Models (LLMs)
By introducing a "layered" approach, the proposed architecture enables on-demand accessibility to LLMs as a customizable service.
We envision that the concept of hierarchical LLM will empower extensive, crowd-sourced user bases to harness the capabilities of LLMs.
arXiv Detail & Related papers (2024-01-29T21:24:10Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.