E2LVLM:Evidence-Enhanced Large Vision-Language Model for Multimodal Out-of-Context Misinformation Detection
- URL: http://arxiv.org/abs/2502.10455v1
- Date: Wed, 12 Feb 2025 04:25:14 GMT
- Title: E2LVLM:Evidence-Enhanced Large Vision-Language Model for Multimodal Out-of-Context Misinformation Detection
- Authors: Junjie Wu, Yumeng Fu, Nan Yu, Guohong Fu,
- Abstract summary: We present E2LVLM, a novel evidence-enhanced large vision-language model by adapting textual evidence in two levels.
To address the scarcity of news domain datasets with both judgment and explanation, we generate a novel OOC multimodal instruction-following dataset.
A multitude of experiments demonstrate that E2LVLM achieves superior performance than state-of-the-art methods.
- Score: 7.1939657372410375
- License:
- Abstract: Recent studies in Large Vision-Language Models (LVLMs) have demonstrated impressive advancements in multimodal Out-of-Context (OOC) misinformation detection, discerning whether an authentic image is wrongly used in a claim. Despite their success, the textual evidence of authentic images retrieved from the inverse search is directly transmitted to LVLMs, leading to inaccurate or false information in the decision-making phase. To this end, we present E2LVLM, a novel evidence-enhanced large vision-language model by adapting textual evidence in two levels. First, motivated by the fact that textual evidence provided by external tools struggles to align with LVLMs inputs, we devise a reranking and rewriting strategy for generating coherent and contextually attuned content, thereby driving the aligned and effective behavior of LVLMs pertinent to authentic images. Second, to address the scarcity of news domain datasets with both judgment and explanation, we generate a novel OOC multimodal instruction-following dataset by prompting LVLMs with informative content to acquire plausible explanations. Further, we develop a multimodal instruction-tuning strategy with convincing explanations for beyond detection. This scheme contributes to E2LVLM for multimodal OOC misinformation detection and explanation. A multitude of experiments demonstrate that E2LVLM achieves superior performance than state-of-the-art methods, and also provides compelling rationales for judgments.
Related papers
- Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks.
LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension.
We propose LACING to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG)
arXiv Detail & Related papers (2024-11-21T16:33:30Z) - RoRA-VLM: Robust Retrieval-Augmented Vision Language Models [41.09545760534495]
RORA-VLM is a novel and robust retrieval augmentation framework specifically tailored for vision-language models.
We conduct extensive experiments to validate the effectiveness and robustness of our proposed methods on three widely adopted benchmark datasets.
arXiv Detail & Related papers (2024-10-11T14:51:00Z) - Multimodal Misinformation Detection using Large Vision-Language Models [7.505532091249881]
Large language models (LLMs) have shown remarkable performance in various tasks.
Few approaches consider evidence retrieval as part of misinformation detection.
We propose a novel re-ranking approach for multimodal evidence retrieval.
arXiv Detail & Related papers (2024-07-19T13:57:11Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.
Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.
We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - LEMMA: Towards LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation [58.524237916836164]
We propose LEMMA: LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation.
Our method improves the accuracy over the top baseline LVLM by 7% and 13% on Twitter and Fakeddit datasets respectively.
arXiv Detail & Related papers (2024-02-19T08:32:27Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
Multimodal Large Language Models (MLLMs) have endowed LLMs with the ability to perceive and understand multi-modal signals.
Most of the existing MLLMs mainly adopt vision encoders pretrained on coarsely aligned image-text pairs, leading to insufficient extraction and reasoning of visual knowledge.
We propose a dual-Level vIsual knedgeOwl eNhanced Multimodal Large Language Model (LION), which empowers the MLLM by injecting visual knowledge in two levels.
arXiv Detail & Related papers (2023-11-20T15:56:44Z) - A Multi-Modal Context Reasoning Approach for Conditional Inference on
Joint Textual and Visual Clues [23.743431157431893]
Conditional inference on joint textual and visual clues is a multi-modal reasoning task.
We propose a Multi-modal Context Reasoning approach, named ModCR.
We conduct extensive experiments on two corresponding data sets and experimental results show significantly improved performance.
arXiv Detail & Related papers (2023-05-08T08:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.