Preference learning made easy: Everything should be understood through win rate
- URL: http://arxiv.org/abs/2502.10505v1
- Date: Fri, 14 Feb 2025 19:01:34 GMT
- Title: Preference learning made easy: Everything should be understood through win rate
- Authors: Lily H. Zhang, Rajesh Ranganath,
- Abstract summary: This work presents a framework to understand preference learning starting from the sampling of pairwise preference data.
First, we prove that the only evaluation of a generative model that respects both preferences and prevalences in the data distribution is a form of win rate.
We then analyze preference learning methods as win rate optimization (WRO) or non-WRO.
- Score: 25.849945888898997
- License:
- Abstract: Preference learning, or the task of aligning generative models to preference comparison data, has yet to reach the conceptual maturity of classification, density estimation, etc. To close this gap, this work presents a framework to understand preference learning starting from the sampling distribution of pairwise preference data. First, we prove that the only evaluation of a generative model that respects both preferences and prevalences in the data distribution is a form of win rate, justifying win rate as the focal point to understand preference learning. We then analyze preference learning methods as win rate optimization (WRO) or non-WRO. We present novel instances of WRO beyond existing examples (RLHF, NLHF) and identify two key theoretical benefits of all such methods. We prove that common non-WRO methods like DPO and SFT on preferred samples lack these properties and suggest ways to mitigate such theoretical limitations. We also show that WRO underperforms in practice due optimization difficulties and that optimization success predicts performance better than choices which affect the objective's solution. Our analysis highlights best practices for existing methods and provides recommendations for future research, guided by the principle that one should either align non-WRO methods more closely with WRO or improve the optimization of WRO objectives.
Related papers
- Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.
CaPO incorporates the general preference from multiple reward models without human annotated data.
Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Preference Optimization as Probabilistic Inference [21.95277469346728]
We propose a method that can leverage unpaired preferred or dis-preferred examples, and works even when only one type of feedback is available.
This flexibility allows us to apply it in scenarios with varying forms of feedback and models, including training generative language models.
arXiv Detail & Related papers (2024-10-05T14:04:03Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
We study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs.
We find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets.
arXiv Detail & Related papers (2024-05-29T21:29:44Z) - Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives [17.10165955576643]
Current state-of-the-art empirical techniques offer sub-optimal performance on practical, non-decomposable performance objectives.
We propose SelMix, a selective mixup-based inexpensive fine-tuning technique for pre-trained models.
We find that proposed SelMix fine-tuning significantly improves the performance for various practical non-decomposable objectives across benchmarks.
arXiv Detail & Related papers (2024-03-27T06:55:23Z) - Reward Model Learning vs. Direct Policy Optimization: A Comparative Analysis of Learning from Human Preferences [24.645259298082436]
We take a step towards a deeper understanding of learning from human preferences by systematically comparing the paradigm of reinforcement learning from human feedback (RLHF) with the recently proposed paradigm of direct preference optimization (DPO)
We derive minimax statistical bounds on the suboptimality gap induced by both RLHF and DPO.
We extend our analysis to the approximate optimization setting and derive exponentially decaying convergence rates for both RLHF and DPO.
arXiv Detail & Related papers (2024-03-04T09:13:14Z) - MaxMin-RLHF: Alignment with Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.