論文の概要: KernelBench: Can LLMs Write Efficient GPU Kernels?
- arxiv url: http://arxiv.org/abs/2502.10517v1
- Date: Fri, 14 Feb 2025 19:30:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:17:23.201860
- Title: KernelBench: Can LLMs Write Efficient GPU Kernels?
- Title(参考訳): KernelBench: LLMは効率的なGPUカーネルを書けるか?
- Authors: Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher Ré, Azalia Mirhoseini,
- Abstract要約: KernelBenchは、高速で正確なカーネルを記述する言語モデルの能力を評価するためのオープンソースのフレームワークである。
本稿では,関数的に正しい生成カーネルの割合を計測する,新しい評価基準であるfast_pを紹介する。
実験の結果,フロンティア推論モデルが最も優れているが,全体としては不足していることがわかった。
- 参考スコア(独自算出の注目度): 36.4117525096377
- License:
- Abstract: Efficient GPU kernels are crucial for building performant machine learning architectures, but writing them is a time-consuming challenge that requires significant expertise; therefore, we explore using language models (LMs) to automate kernel generation. We introduce KernelBench, an open-source framework for evaluating LMs' ability to write fast and correct kernels on a suite of 250 carefully selected PyTorch ML workloads. KernelBench represents a real-world engineering environment and making progress on the introduced benchmark directly translates to faster practical kernels. We introduce a new evaluation metric fast_p, which measures the percentage of generated kernels that are functionally correct and offer a speedup greater than an adjustable threshold p over baseline. Our experiments across various state-of-the-art models and test-time methods show that frontier reasoning models perform the best out of the box but still fall short overall, matching the PyTorch baseline in less than 20% of the cases. While we show that results can improve by leveraging execution and profiling feedback during iterative refinement, KernelBench remains a challenging benchmark, with its difficulty increasing as we raise speedup threshold p.
- Abstract(参考訳): 高性能なGPUカーネルは、パフォーマンスの高い機械学習アーキテクチャを構築するのに不可欠だが、それを書くことはかなりの専門知識を必要とする時間を要する課題である。
我々は、PyTorch MLワークロードを慎重に選択した250のスイート上で、LMが高速で正しいカーネルを書く能力を評価するためのオープンソースのフレームワークであるKernelBenchを紹介した。
KernelBenchは実世界のエンジニアリング環境を表し、導入したベンチマークの進捗は、より高速な実用的なカーネルに直接変換される。
我々は,機能的に正しいカーネルの比率を測定し,ベースライン上の調整可能なしきい値pよりも大きなスピードアップを提供する,新しい評価基準であるfast_pを導入する。
様々な最先端モデルとテストタイム手法による実験により、フロンティア推論モデルはボックスから最高の結果を得るが、全体としては不足し、PyTorchベースラインを20%未満のケースで比較した。
KernelBenchは、反復的な改善中に実行とプロファイリングのフィードバックを活用することで改善できることを示すが、高速化しきい値pを上昇するにつれて、その困難さが増す。
関連論文リスト
- ThunderKittens: Simple, Fast, and Adorable AI Kernels [43.32681787348603]
We present ThunderKittens (TK), a framework for write performanceant AI kernels while rest to use and maintain。
我々は、さまざまなAI操作に対して、以前のカーネルと一致するか、より優れているカーネルを提供することで、TKの価値を示す。
論文 参考訳(メタデータ) (2024-10-27T10:07:16Z) - Liger Kernel: Efficient Triton Kernels for LLM Training [6.373771349397682]
大規模言語モデル(LLM)を大規模に効果的に訓練することは、ますます増大する計算要求によって引き起こされる、恐ろしい挑戦となる。
LLMトレーニング用に開発されたTritonカーネルのオープンソースセットであるLiger- Kernelを紹介する。
カーネル操作の融合や入力チャンキングといったカーネル最適化技術により、カーネルはトレーニングのスループットが平均20%向上し、GPUメモリ使用量が60%削減された。
論文 参考訳(メタデータ) (2024-10-14T18:17:01Z) - KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution [59.20933707301566]
大規模言語モデル(LLM)は、ますます現実的なソフトウェア工学(SE)タスクにおいて一貫して改善されている。
現実世界のソフトウェアスタックでは、Linuxカーネルのような基本的なシステムソフトウェアの開発にSEの取り組みが費やされています。
このような大規模システムレベルのソフトウェアを開発する際にMLモデルが有用かどうかを評価するため、kGymとkBenchを紹介する。
論文 参考訳(メタデータ) (2024-07-02T21:44:22Z) - Optimal Kernel Tuning Parameter Prediction using Deep Sequence Models [0.44998333629984877]
本稿では,深部列列列モデルを用いて,計算カーネルを管理する最適チューニングパラメータを予測する手法を提案する。
提案アルゴリズムは、AMD機械学習プリミティブライブラリであるMIOpenにおいて、様々な畳み込みカーネル上で90%以上の精度を達成することができる。
論文 参考訳(メタデータ) (2024-04-15T22:25:54Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - Snacks: a fast large-scale kernel SVM solver [0.8602553195689513]
SnacksはKernel Support Vector Machines用の新しい大規模ソルバである。
スナックは、カーネル行列の「Nystr」近似と、下次法の加速変種に依存している。
論文 参考訳(メタデータ) (2023-04-17T04:19:20Z) - Kernel Identification Through Transformers [54.3795894579111]
カーネル選択はガウス過程(GP)モデルの性能決定において中心的な役割を果たす。
この研究は、高次元GP回帰モデルのためのカスタムカーネル関数を構築するという課題に対処する。
KITT: Kernel Identification through Transformersを提案する。
論文 参考訳(メタデータ) (2021-06-15T14:32:38Z) - Source Code Classification for Energy Efficiency in Parallel Ultra
Low-Power Microcontrollers [5.4352987210173955]
本稿では,ソフトウェアツールチェーンの知性を向上し,最新のアーキテクチャを最大限に活用することを目的とする。
低電力の並列組込みアーキテクチャの場合、これは、例えばコア数の観点から構成を見つけることを意味し、最小限のエネルギー消費につながる。
実験によれば、ソースコード上で機械学習モデルを使用して最適なエネルギースケーリング構成を自動的に選択することは可能であり、エネルギー最小化のための自動システム構成のコンテキストで使用できる可能性がある。
論文 参考訳(メタデータ) (2020-12-12T15:12:03Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - PolyScientist: Automatic Loop Transformations Combined with Microkernels
for Optimization of Deep Learning Primitives [55.79741270235602]
深層学習カーネル開発のためのハイブリッドソリューションを開発する。
我々は、高度な多面体技術を用いて、パフォーマンスのために外部ループを自動的に調整する。
論文 参考訳(メタデータ) (2020-02-06T08:02:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。