Learning to be Smooth: An End-to-End Differentiable Particle Smoother
- URL: http://arxiv.org/abs/2502.10546v1
- Date: Fri, 14 Feb 2025 20:26:54 GMT
- Title: Learning to be Smooth: An End-to-End Differentiable Particle Smoother
- Authors: Ali Younis, Erik B. Sudderth,
- Abstract summary: We develop a framework for low-variance propagation of gradients across long time sequences when training particle smoothers.
Our "two-filter'' smoother integrates particle streams that are propagated forward and backward in time.
The resulting mixture density particle smoother is substantially more accurate than state-of-the-art particle filters.
- Score: 6.024667647886018
- License:
- Abstract: For challenging state estimation problems arising in domains like vision and robotics, particle-based representations attractively enable temporal reasoning about multiple posterior modes. Particle smoothers offer the potential for more accurate offline data analysis by propagating information both forward and backward in time, but have classically required human-engineered dynamics and observation models. Extending recent advances in discriminative training of particle filters, we develop a framework for low-variance propagation of gradients across long time sequences when training particle smoothers. Our "two-filter'' smoother integrates particle streams that are propagated forward and backward in time, while incorporating stratification and importance weights in the resampling step to provide low-variance gradient estimates for neural network dynamics and observation models. The resulting mixture density particle smoother is substantially more accurate than state-of-the-art particle filters, as well as search-based baselines, for city-scale global vehicle localization from real-world videos and maps.
Related papers
- Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks [25.103069515802538]
We introduce a new method, StateMixNN, that uses a pair of neural networks to learn the proposal distribution and transition distribution of a particle filter.
Our method is trained targeting the log-likelihood, thereby requiring only the observation series.
The proposed method significantly improves recovery of the hidden state in comparison with the state-of-the-art, showing greater improvement in highly non-linear scenarios.
arXiv Detail & Related papers (2024-11-23T19:30:56Z) - Learning to Approximate Particle Smoothing Trajectories via Diffusion Generative Models [16.196738720721417]
Learning systems from sparse observations is critical in numerous fields, including biology, finance, and physics.
We introduce a method that integrates conditional particle filtering with ancestral sampling and diffusion models.
We demonstrate the approach in time-series generation and tasks, including vehicle tracking and single-cell RNA sequencing data.
arXiv Detail & Related papers (2024-06-01T21:54:01Z) - Differentiable and Stable Long-Range Tracking of Multiple Posterior Modes [1.534667887016089]
We leverage training data to discriminatively learn particle-based representations of uncertainty in latent object states.
Our approach achieves dramatic improvements in accuracy, while also showing much greater stability across multiple training runs.
arXiv Detail & Related papers (2024-04-12T19:33:52Z) - An overview of differentiable particle filters for data-adaptive
sequential Bayesian inference [19.09640071505051]
Particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems.
An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent.
Differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks.
arXiv Detail & Related papers (2023-02-19T18:03:53Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - Particle clustering in turbulence: Prediction of spatial and statistical
properties with deep learning [6.91821181311687]
We simulate the dynamics of particles in the Epstein drag regime within a periodic domain of isotropic forced hydrodynamic turbulence.
We train a U-Net deep learning model to predict gridded representations of the particle density and velocity fields, given as input the corresponding fluid fields.
Our results suggest that, given appropriately expanded training data, deep learning could complement direct numerical simulations in predicting particle clustering within turbulent flows.
arXiv Detail & Related papers (2022-10-05T15:46:28Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Transformer with Implicit Edges (TIE) captures the rich semantics of particle interactions in an edge-free manner.
We evaluate our model on diverse domains of varying complexity and materials.
arXiv Detail & Related papers (2022-07-22T03:45:29Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids.
In this paper, we consider a partially observable scenario known as fluid dynamics grounding.
We propose a differentiable two-stage network named NeuroFluid.
It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities.
arXiv Detail & Related papers (2022-03-03T15:13:29Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
We present a method for adaptive tuning of the low-dimensional latent space of deep encoder-decoder style CNNs.
We demonstrate our approach for predicting the properties of a time-varying charged particle beam in a particle accelerator.
arXiv Detail & Related papers (2021-05-08T03:50:45Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.