Differentiable and Stable Long-Range Tracking of Multiple Posterior Modes
- URL: http://arxiv.org/abs/2404.08789v1
- Date: Fri, 12 Apr 2024 19:33:52 GMT
- Title: Differentiable and Stable Long-Range Tracking of Multiple Posterior Modes
- Authors: Ali Younis, Erik Sudderth,
- Abstract summary: We leverage training data to discriminatively learn particle-based representations of uncertainty in latent object states.
Our approach achieves dramatic improvements in accuracy, while also showing much greater stability across multiple training runs.
- Score: 1.534667887016089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Particle filters flexibly represent multiple posterior modes nonparametrically, via a collection of weighted samples, but have classically been applied to tracking problems with known dynamics and observation likelihoods. Such generative models may be inaccurate or unavailable for high-dimensional observations like images. We instead leverage training data to discriminatively learn particle-based representations of uncertainty in latent object states, conditioned on arbitrary observations via deep neural network encoders. While prior discriminative particle filters have used heuristic relaxations of discrete particle resampling, or biased learning by truncating gradients at resampling steps, we achieve unbiased and low-variance gradient estimates by representing posteriors as continuous mixture densities. Our theory and experiments expose dramatic failures of existing reparameterization-based estimators for mixture gradients, an issue we address via an importance-sampling gradient estimator. Unlike standard recurrent neural networks, our mixture density particle filter represents multimodal uncertainty in continuous latent states, improving accuracy and robustness. On a range of challenging tracking and robot localization problems, our approach achieves dramatic improvements in accuracy, while also showing much greater stability across multiple training runs.
Related papers
- Learning to Approximate Particle Smoothing Trajectories via Diffusion Generative Models [16.196738720721417]
Learning systems from sparse observations is critical in numerous fields, including biology, finance, and physics.
We introduce a method that integrates conditional particle filtering with ancestral sampling and diffusion models.
We demonstrate the approach in time-series generation and tasks, including vehicle tracking and single-cell RNA sequencing data.
arXiv Detail & Related papers (2024-06-01T21:54:01Z) - QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input [17.017127559393398]
We propose a differentiable soft quantizer, which better simulates the gradient of the round function during backpropagation.
This enables the network to learn from subtle input perturbations.
We further refine the training strategy to ensure convergence while simulating quantization errors.
arXiv Detail & Related papers (2024-05-22T17:34:18Z) - DynGMA: a robust approach for learning stochastic differential equations from data [13.858051019755283]
We introduce novel approximations to the transition density of the parameterized SDE.
Our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift diffusion functions.
It is capable of handling data with low time resolution and variable, even uncontrollable, time step sizes.
arXiv Detail & Related papers (2024-02-22T12:09:52Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - Jump-Diffusion Langevin Dynamics for Multimodal Posterior Sampling [3.4483987421251516]
We investigate the performance of a hybrid Metropolis and Langevin sampling method akin to Jump Diffusion on a range of synthetic and real data.
We find that careful calibration of mixing sampling jumps with gradient based chains significantly outperforms both pure gradient-based or sampling based schemes.
arXiv Detail & Related papers (2022-11-02T17:35:04Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Model discovery in the sparse sampling regime [0.0]
We show how deep learning can improve model discovery of partial differential equations.
As a result, deep learning-based model discovery allows to recover the underlying equations.
We illustrate our claims on both synthetic and experimental sets.
arXiv Detail & Related papers (2021-05-02T06:27:05Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.