論文の概要: SAMRI-2: A Memory-based Model for Cartilage and Meniscus Segmentation in 3D MRIs of the Knee Joint
- arxiv url: http://arxiv.org/abs/2502.10559v1
- Date: Fri, 14 Feb 2025 21:18:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:58.603806
- Title: SAMRI-2: A Memory-based Model for Cartilage and Meniscus Segmentation in 3D MRIs of the Knee Joint
- Title(参考訳): SAMRI-2: 膝関節3次元MRIにおける軟骨・半月板剥離の記憶モデル
- Authors: Danielle L. Ferreira, Bruno A. A. Nunes, Xuzhe Zhang, Laura Carretero Gomez, Maggie Fung, Ravi Soni,
- Abstract要約: 本研究では,メモリベースのVFMを用いた3次元MRIによる軟骨・半月板分割のためのディープラーニング(DL)手法を提案する。
我々はCNNベースの3D-VNetと2つの自動トランスフォーマーベースモデル(SaMRI2DとSaMRI3D)、およびトランスフォーマーベースのプロンプト可能なメモリベースVFM(SAMRI-2)を270例の3D膝MRIで訓練した。
SAMRI-2はHSSで訓練され、他の全てのモデルより優れ、平均5ポイント改善し、最高12ポイント向上した。
- 参考スコア(独自算出の注目度): 0.7879983966759583
- License:
- Abstract: Accurate morphometric assessment of cartilage-such as thickness/volume-via MRI is essential for monitoring knee osteoarthritis. Segmenting cartilage remains challenging and dependent on extensive expert-annotated datasets, which are heavily subjected to inter-reader variability. Recent advancements in Visual Foundational Models (VFM), especially memory-based approaches, offer opportunities for improving generalizability and robustness. This study introduces a deep learning (DL) method for cartilage and meniscus segmentation from 3D MRIs using interactive, memory-based VFMs. To improve spatial awareness and convergence, we incorporated a Hybrid Shuffling Strategy (HSS) during training and applied a segmentation mask propagation technique to enhance annotation efficiency. We trained four AI models-a CNN-based 3D-VNet, two automatic transformer-based models (SaMRI2D and SaMRI3D), and a transformer-based promptable memory-based VFM (SAMRI-2)-on 3D knee MRIs from 270 patients using public and internal datasets and evaluated on 57 external cases, including multi-radiologist annotations and different data acquisitions. Model performance was assessed against reference standards using Dice Score (DSC) and Intersection over Union (IoU), with additional morphometric evaluations to further quantify segmentation accuracy. SAMRI-2 model, trained with HSS, outperformed all other models, achieving an average DSC improvement of 5 points, with a peak improvement of 12 points for tibial cartilage. It also demonstrated the lowest cartilage thickness errors, reducing discrepancies by up to threefold. Notably, SAMRI-2 maintained high performance with as few as three user clicks per volume, reducing annotation effort while ensuring anatomical precision. This memory-based VFM with spatial awareness offers a novel approach for reliable AI-assisted knee MRI segmentation, advancing DL in musculoskeletal imaging.
- Abstract(参考訳): 変形性膝関節症に対するMRIなどの軟骨の正確な形態計測は, 変形性膝関節症の診断に不可欠である。
軟骨の分離は依然として困難であり、広範囲の専門家による注釈付きデータセットに依存している。
Visual Foundational Models(VFM)の最近の進歩、特にメモリベースのアプローチは、一般化性と堅牢性を改善する機会を提供する。
本研究では,対話型メモリベースVFMを用いた3次元MRIの軟骨・半月板分割のためのディープラーニング(DL)手法を提案する。
空間認識と収束性を改善するため,訓練中にHybrid Shuffling Strategy(HSS)を導入し,アノテーション効率を高めるためにセグメンテーションマスク伝搬技術を適用した。
我々は、CNNベースの3D-VNetと2つの自動トランスフォーマーベースモデル(SaMRI2DとSaMRI3D)、およびトランスフォーマーベースのプロンプト可能なメモリベースVFM(SAMRI-2)オン3D膝MRI(SAMRI-2)の4つのAIモデルを、公開および内部データセットを用いて270人の患者からトレーニングし、マルチラジオストアノテーションや異なるデータ取得を含む57の外部ケースで評価した。
モデル性能をDice Score (DSC) とIntersection over Union (IoU) を用いて基準基準と比較し, セグメンテーション精度をさらに定量的に評価した。
SAMRI-2はHSSで訓練され、他の全てのモデルより優れており、平均DSC改善は5ポイント、最高改善は12ポイントであった。
また, 軟骨の厚さの誤差が低く, 差が最大3倍に減少した。
特にSAMRI-2は1ボリュームあたり3回のクリックで高い性能を維持し、解剖学的精度を確保しながらアノテーションの労力を削減した。
空間認識を伴うこのメモリベースのVFMは、筋骨格イメージングにおいて、信頼性の高いAI支援膝MRIセグメント化のための新しいアプローチを提供する。
関連論文リスト
- Unified 3D MRI Representations via Sequence-Invariant Contrastive Learning [0.15749416770494706]
定量的MRI(qMRI)を利用したシーケンス不変な自己教師型フレームワークを提案する。
健常脳セグメンテーション(IXI)、脳梗塞セグメンテーション(ARC)、MRIによるデノイング実験は、ベースラインSSLアプローチよりも有意な増加を示した。
また,本モデルは,よりスケーラブルで臨床的に信頼性の高いボリューム分析の可能性を示した。
論文 参考訳(メタデータ) (2025-01-21T11:27:54Z) - UniCoN: Universal Conditional Networks for Multi-Age Embryonic Cartilage Segmentation with Sparsely Annotated Data [13.379161180001303]
骨軟骨異形成症は、新生児の2-3%に影響を及ぼし、骨と軟骨の障害の集団である。
この病気に関する現在の研究は、胚性マウスの3DマイクロCT画像において、発育する軟骨を正確にセグメント化することを含んでいる。
本研究では, 軟骨形状変化の正確な表現を可能にするために, 個別の年齢区分と連続的な画像作物位置の2つの新しいメカニズムを提案する。
論文 参考訳(メタデータ) (2024-10-16T21:06:55Z) - Novel adaptation of video segmentation to 3D MRI: efficient zero-shot knee segmentation with SAM2 [1.6237741047782823]
Segment Anything Model 2 を応用した3次元膝関節MRIのゼロショット単発セグメンテーション法を提案する。
3次元医用ボリュームのスライスを個々のビデオフレームとして扱うことで、SAM2の高度な能力を利用して、モーションおよび空間認識の予測を生成する。
SAM2は、訓練や微調整を伴わずに、ゼロショット方式でセグメント化タスクを効率的に実行できることを実証する。
論文 参考訳(メタデータ) (2024-08-08T21:39:15Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
我々は,多系列ニューロオンコロジーMRIデータの集約と処理のための人工知能ベースのソリューションを提案する。
エンド・ツー・エンドのフレームワーク i) アンサンブル分類器を用いてMRIの配列を分類し, i) 再現可能な方法でデータを前処理し, iv) 腫瘍組織サブタイプを規定する。
欠落したシーケンスに対して堅牢であり、専門的なループアプローチを採用しており、セグメンテーションの結果は放射線学者によって手動で洗練される可能性がある。
論文 参考訳(メタデータ) (2022-10-06T18:23:42Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
追加の注意層を持つU-net畳み込みニューラルネットワークは、最高の手首軟骨分割性能を提供する。
非MRI法を用いて軟骨体積測定の誤差を独立に評価すべきである。
論文 参考訳(メタデータ) (2022-06-22T14:19:06Z) - Assessment of Data Consistency through Cascades of Independently
Recurrent Inference Machines for fast and robust accelerated MRI
reconstruction [0.0]
データ一貫性(DC)は多モードデータの一般化と病理診断における堅牢性に不可欠である。
本研究は、非ループ最適化によりDCを評価するために、CIRIM (Independently Recurrent Inference Machines) のカスケードを提案する。
E2EVNは直流を明示的に定式化する必要があるのに対し、直流を暗黙的に強制する場合はCIRIMが最善であることを示す。
論文 参考訳(メタデータ) (2021-11-30T15:34:30Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
我々は,MRIボリュームと空間消去を組み合わせた空間文脈の増大が,教師なしの異常セグメンテーション性能の向上に繋がるかどうかを検討する。
本稿では,2次元変分オートエンコーダ(VAE)と3次元の相違点を比較し,3次元入力消去を提案し,データセットサイズが性能に与える影響を体系的に検討する。
入力消去による最高の3D VAEは、平均DICEスコアが31.40%となり、2D VAEは25.76%となった。
論文 参考訳(メタデータ) (2021-09-14T09:17:27Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。