論文の概要: Efficient Hierarchical Contrastive Self-supervising Learning for Time Series Classification via Importance-aware Resolution Selection
- arxiv url: http://arxiv.org/abs/2502.10567v1
- Date: Fri, 14 Feb 2025 21:32:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:57.784696
- Title: Efficient Hierarchical Contrastive Self-supervising Learning for Time Series Classification via Importance-aware Resolution Selection
- Title(参考訳): 重要度認識による時系列分類のための効率的な階層的コントラスト自己監督学習
- Authors: Kevin Garcia, Juan Manuel Perez, Yifeng Gao,
- Abstract要約: 本稿では,階層型コントラスト学習モデルの学習方法を提案する。
各解像度のデータ埋め込みが極めて依存しているという事実に着想を得て、重要対応の解像度選択に基づくトレーニングフレームワークを導入する。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License:
- Abstract: Recently, there has been a significant advancement in designing Self-Supervised Learning (SSL) frameworks for time series data to reduce the dependency on data labels. Among these works, hierarchical contrastive learning-based SSL frameworks, which learn representations by contrasting data embeddings at multiple resolutions, have gained considerable attention. Due to their ability to gather more information, they exhibit better generalization in various downstream tasks. However, when the time series data length is significant long, the computational cost is often significantly higher than that of other SSL frameworks. In this paper, to address this challenge, we propose an efficient way to train hierarchical contrastive learning models. Inspired by the fact that each resolution's data embedding is highly dependent, we introduce importance-aware resolution selection based training framework to reduce the computational cost. In the experiment, we demonstrate that the proposed method significantly improves training time while preserving the original model's integrity in extensive time series classification performance evaluations. Our code could be found here, https://github.com/KEEBVIN/IARS
- Abstract(参考訳): 近年,データラベルへの依存性を低減するために,時系列データのための自己監視学習(SSL)フレームワークの設計が大幅に進歩している。
これらの研究の中で、複数の解像度でデータ埋め込みを対比することで表現を学習する階層的な学習ベースのSSLフレームワークが注目されている。
より多くの情報を集める能力のため、様々な下流タスクにおいてより優れた一般化を示す。
しかし、時系列データ長がかなり長い場合、計算コストは他のSSLフレームワークよりもはるかに高い場合が多い。
本稿では,この課題に対処するために,階層的コントラスト学習モデルを効果的に学習する方法を提案する。
各解像度のデータ埋め込みが非常に依存しているという事実に着想を得て、計算コストを削減するために、重要対応の解像度選択に基づくトレーニングフレームワークを導入する。
実験では,提案手法は,広範囲な時系列分類性能評価において,原モデルの完全性を保ちながら,トレーニング時間を大幅に改善することを示した。
私たちのコードは、https://github.com/KEEBVIN/IARSで見つけることができます。
関連論文リスト
- On Improving the Algorithm-, Model-, and Data- Efficiency of Self-Supervised Learning [18.318758111829386]
非パラメトリックなインスタンス識別に基づく効率的なシングルブランチSSL手法を提案する。
また,確率分布と正方形根版とのKL分散を最小限に抑える新しい自己蒸留損失を提案する。
論文 参考訳(メタデータ) (2024-04-30T06:39:04Z) - Parametric Augmentation for Time Series Contrastive Learning [33.47157775532995]
我々は、堅牢で差別的な表現を学習する上でモデルを支援するポジティブな例を作成します。
通常、プリセットされた人間の直観は、関連するデータ拡張の選択を指示する。
本稿では、時系列表現学習を支援するために適応的に使用できるパラメトリック拡張型学習フレームワークAutoTCLを提案する。
論文 参考訳(メタデータ) (2024-02-16T03:51:14Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects [84.6945070729684]
自己教師付き学習(SSL)は、最近、様々な時系列タスクで印象的なパフォーマンスを達成した。
この記事では、時系列データに対する最先端のSSLメソッドについてレビューする。
論文 参考訳(メタデータ) (2023-06-16T18:23:10Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Optimal Decision Diagrams for Classification [68.72078059880018]
数学的プログラミングの観点から最適決定図の学習について検討する。
本稿では,新しい混合整数線形プログラミングモデルを提案する。
このモデルは、公正性、同義性、安定性の概念に対してどのように容易に拡張できるかを示す。
論文 参考訳(メタデータ) (2022-05-28T18:31:23Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - Interpretable Time Series Classification using Linear Models and
Multi-resolution Multi-domain Symbolic Representations [6.6147550436077776]
我々は,現在のアプローチにおけるギャップに対処する新しい時系列分類アルゴリズムを提案する。
提案手法は,時系列の記号表現,効率的なシーケンスマイニングアルゴリズム,線形分類モデルに基づく。
我々のモデルは深層学習モデルと同じくらい正確だが、実行時間やメモリに関してより効率的であり、可変長の時系列を扱うことができ、元の時系列における識別的象徴的特徴を強調することで解釈できる。
論文 参考訳(メタデータ) (2020-05-31T15:32:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。