論文の概要: Data-driven Super-Resolution of Flood Inundation Maps using Synthetic Simulations
- arxiv url: http://arxiv.org/abs/2502.10601v1
- Date: Fri, 14 Feb 2025 23:16:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:19.763257
- Title: Data-driven Super-Resolution of Flood Inundation Maps using Synthetic Simulations
- Title(参考訳): 合成シミュレーションによる洪水浸水マップの高分解能化
- Authors: Akshay Aravamudan, Zimeena Rasheed, Xi Zhang, Kira E. Scarpignato, Efthymios I. Nikolopoulos, Witold F. Krajewski, Georgios C. Anagnostopoulos,
- Abstract要約: 物理シミュレーションにより得られた高品質な合成データを用いてモデルを訓練する。
アイオワ州の洪水イベントから得られた実世界のデータに基づいて,我々のモデルを評価した。
- 参考スコア(独自算出の注目度): 8.52854374818894
- License:
- Abstract: The frequency of extreme flood events is increasing throughout the world. Daily, high-resolution (30m) Flood Inundation Maps (FIM) observed from space play a key role in informing mitigation and preparedness efforts to counter these extreme events. However, the temporal frequency of publicly available high-resolution FIMs, e.g., from Landsat, is at the order of two weeks thus limiting the effective monitoring of flood inundation dynamics. Conversely, global, low-resolution (~300m) Water Fraction Maps (WFM) are publicly available from NOAA VIIRS daily. Motivated by the recent successes of deep learning methods for single image super-resolution, we explore the effectiveness and limitations of similar data-driven approaches to downscaling low-resolution WFMs to high-resolution FIMs. To overcome the scarcity of high-resolution FIMs, we train our models with high-quality synthetic data obtained through physics-based simulations. We evaluate our models on real-world data from flood events in the state of Iowa. The study indicates that data-driven approaches exhibit superior reconstruction accuracy over non-data-driven alternatives and that the use of synthetic data is a viable proxy for training purposes. Additionally, we show that our trained models can exhibit superior zero-shot performance when transferred to regions with hydroclimatological similarity to the U.S. Midwest.
- Abstract(参考訳): 急激な洪水の発生頻度は世界中で増加している。
宇宙から観測された毎日の高解像度(30m)のフラッド・インダクション・マップ(FIM)は、これらの極端な出来事に対処するための緩和と準備の取り組みを示す重要な役割を担っている。
しかし,ランドサットからの高分解能FIMの時間周波数は2週間のオーダーであり,浸水動態の効果的なモニタリングが制限されている。
逆に、グローバルで低解像度(約300m)のウォーターフラクションマップ(WFM)がNOAA VIIRSから毎日公開されている。
単一画像超解像のためのディープラーニング手法の最近の成功により、我々は、低解像度のWFMを高解像度のFIMにダウンスケールする類似のデータ駆動手法の有効性と限界について検討した。
高分解能FIMの不足を克服するため、物理シミュレーションにより得られた高品質な合成データを用いてモデルを訓練する。
アイオワ州の洪水イベントから得られた実世界のデータに基づいて,我々のモデルを評価した。
この研究は、データ駆動アプローチが非データ駆動アプローチよりも優れた再構成精度を示し、合成データの使用がトレーニング目的の有効なプロキシであることを示している。
さらに,米国中西部と水文学的に類似した地域へ移動した場合,訓練したモデルの方が優れたゼロショット性能を示すことを示す。
関連論文リスト
- AI Driven Water Segmentation with deep learning models for Enhanced Flood Monitoring [0.0]
洪水は大きな自然災害であり、毎年重大な死者と経済的な損失をもたらし、気候変動によって頻度が増している。
本研究では,UNet,ResNet,DeepLabv3の3種類の深層学習モデルの性能を比較する。
論文 参考訳(メタデータ) (2025-01-14T17:26:02Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
そこで本研究では,現実的に複雑な1kmスケールの気象条件下でのスコアベースデータ同化の実現可能性を示す。
40の気象観測所からの観測を取り入れることで、左の観測所で10%低いRMSEが達成される。
ますます野心的な地域国家ジェネレータと、In situ、地上ベース、衛星リモートセンシングデータストリームの集合を組み合わす拡張を探求する時期だ。
論文 参考訳(メタデータ) (2024-06-19T10:28:11Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
我々は、高分解能でバイアス補正された予測のアンサンブルを生成するために、CorrectorGANという条件付きジェネレーティブ・アドバイサル・ネットワークを訓練する。
一度訓練されたCorrectorGANは、1台のマシンで数秒で予測を生成する。
その結果、地域モデルの必要性や、データ駆動型ダウンスケーリングと修正手法がデータ・プール領域に移行できるかどうかについて、エキサイティングな疑問が浮かび上がっている。
論文 参考訳(メタデータ) (2022-03-23T09:45:12Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。