論文の概要: K-Edit: Language Model Editing with Contextual Knowledge Awareness
- arxiv url: http://arxiv.org/abs/2502.10626v2
- Date: Thu, 27 Feb 2025 06:59:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:54:35.805902
- Title: K-Edit: Language Model Editing with Contextual Knowledge Awareness
- Title(参考訳): K-Edit: 文脈知識を考慮した言語モデル編集
- Authors: Elan Markowitz, Anil Ramakrishna, Ninareh Mehrabi, Charith Peris, Rahul Gupta, Kai-Wei Chang, Aram Galstyan,
- Abstract要約: 知識に基づくモデル編集は、大きな言語モデルの重みを正確に修正することを可能にする。
我々は、文脈的に一貫した知識編集を生成するための効果的なアプローチであるK-Editを提案する。
- 参考スコア(独自算出の注目度): 71.73747181407323
- License:
- Abstract: As the world changes, we need to be able to update our models and correct false information without costly retraining. Knowledge-based model editing enables precise modifications to the weights of large language models in order to modify the information encoded within. Recent approaches have seen success in enabling recall of edited information for thousands of edits at once. However, these approaches fail to produce edits that account for associated contextual information. We present K-Edit, an effective approach to generating contextually consistent knowledge edits. By using knowledge graphs, which maintain contextual consistency when an edge is edited, we are able to generate additional \textit{contextual edits} that ensure consistency of related information in the language model. Our experiments demonstrate significant improvements in multi-hop question answering while maintaining the general effectiveness and scalability of model edits.
- Abstract(参考訳): 世界が変わるにつれて、当社のモデルを更新し、コストのかかるリトレーニングなしに偽情報を修正しなければなりません。
知識に基づくモデル編集により、大きな言語モデルの重みを正確に修正し、内部にエンコードされた情報を修正することができる。
最近のアプローチでは、一度に数千の編集のために編集情報のリコールを可能にすることに成功した。
しかし、これらのアプローチは関連するコンテキスト情報を考慮した編集を作成できない。
我々は、文脈的に一貫した知識編集を生成するための効果的なアプローチであるK-Editを提案する。
エッジが編集されたときにコンテキスト整合性を維持する知識グラフを使用することで、言語モデルにおける関連情報の整合性を確保するために、追加の \textit{contextualEdits} を生成することができる。
本実験は,モデル編集の汎用性とスケーラビリティを維持しつつ,マルチホップ質問応答の大幅な改善を示すものである。
関連論文リスト
- AnyEdit: Edit Any Knowledge Encoded in Language Models [69.30638272162267]
大規模言語モデル(LLM)のための新しい自動回帰編集パラダイムであるAnyEditを提案する。
長い形式の知識を逐次チャンクに分解し、各チャンク内のキートークンを反復的に編集し、一貫性と正確な出力を保証する。
UnKEBench、AKEW、そして我々の長文の多様な知識のための新しいEditEverythingデータセットを含むベンチマークでは、強いベースラインを21.5%上回っている。
論文 参考訳(メタデータ) (2025-02-08T16:18:37Z) - Related Knowledge Perturbation Matters: Rethinking Multiple Pieces of Knowledge Editing in Same-Subject [49.559994791305535]
現在最先端の編集手法は、複数の関連知識を同じ主題に編集する作業で苦労している。
本稿では,textS2textRKE$(Same-Subject Related Knowledge Editing)ベンチマークを紹介する。
実験の結果,ROMやMEMITのような主流の位置情報編集手法だけが「関連する知識の摂動」を示すことがわかった。
論文 参考訳(メタデータ) (2025-02-08T04:47:17Z) - Should We Really Edit Language Models? On the Evaluation of Edited Language Models [15.63231238452797]
既存の編集手法は、一般的なベンチマークで必然的にパフォーマンスが低下する。
インストラクションチューニングされたモデルは、編集がより堅牢で、編集後の一般的な知識に対するパフォーマンス低下が少ない。
その結果,現在の編集手法は,言語モデル内の小規模な知識更新にのみ適していることがわかった。
論文 参考訳(メタデータ) (2024-10-24T14:36:48Z) - Has this Fact been Edited? Detecting Knowledge Edits in Language Models [5.260519479124422]
知識編集手法(KEs)は、事前学習から学んだ言語モデルの古いまたは不正確な知識を更新することができる。
生成されたアウトプットが編集された知識に基づいているか、あるいは事前学習からのファーストハンド知識に基づいているかを知ることは、生成モデルに対するユーザの信頼を高めることができる。
本稿では,言語モデルにおける編集された知識を検出する新しい課題を提案する。
論文 参考訳(メタデータ) (2024-05-04T22:02:24Z) - Knowledge Graph Enhanced Large Language Model Editing [37.6721061644483]
大規模言語モデル(LLM)は、自然言語処理(NLP)タスクの進行において重要な要素である。
既存の編集方法は、編集に関連する知識の変化を追跡し、組み込むのに苦労する。
知識グラフを利用した新しいモデル編集手法を提案し,LLM編集の強化,すなわちGLAMEを提案する。
論文 参考訳(メタデータ) (2024-02-21T07:52:26Z) - EVEDIT: Event-based Knowledge Editing with Deductive Editing Boundaries [69.72012539060731]
大規模言語モデル(LLM)における効率的な知識編集(KE)の理論的枠組みを導入する。
本稿では,事象をイベント記述と組み合わせたイベントベースの知識編集タスクを提案する。
編集モデルにおける不確実性を解消するための既存の設定よりもイベントベースの編集の方が優れていることを実証的に示す。
論文 参考訳(メタデータ) (2024-02-17T16:34:50Z) - History Matters: Temporal Knowledge Editing in Large Language Model [42.74144542674756]
本稿では,時間的知識編集(TKE)の課題を紹介し,現在のモデル編集手法を評価するためのベンチマークATOKeを確立する。
既存のモデル編集手法は、モデルに新しい知識を記憶させるのに有効であるが、編集されたモデルは歴史的知識を破滅的に忘れてしまう。
このギャップに対処するため,既存の編集モデルを改善するためのMulti-Editing with Time Objective (METO) という,シンプルで汎用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-09T07:51:56Z) - DUnE: Dataset for Unified Editing [3.7346004746366384]
自然言語文を編集するDUnE-an編集ベンチマークを導入する。
検索強化言語モデリングは、特殊な編集技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-27T18:56:14Z) - Memory-Based Model Editing at Scale [102.28475739907498]
既存のモデルエディタは、編集対象のスコープを正確にモデル化するのに苦労する。
SERAC(Retrieval-Augmented Counterfactal Model)を用いた半パラメトリック編集を提案する。
SERACは、編集を明示的なメモリに格納し、必要に応じてベースモデルの予測を変更できるように、それらを推論することを学ぶ。
論文 参考訳(メタデータ) (2022-06-13T23:40:34Z) - Editing Factual Knowledge in Language Models [51.947280241185]
本稿では,この知識を編集する手法であるKnowledgeEditorを提案する。
knowledgeeditorは計算効率が高いだけでなく、lm事前トレーニングの修正も必要としない。
2つの一般的なアーキテクチャと知識集約型タスクで、KnowledgeEditorの有効性を示します。
論文 参考訳(メタデータ) (2021-04-16T15:24:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。