Epidemic-guided deep learning for spatiotemporal forecasting of Tuberculosis outbreak
- URL: http://arxiv.org/abs/2502.10786v1
- Date: Sat, 15 Feb 2025 12:39:42 GMT
- Title: Epidemic-guided deep learning for spatiotemporal forecasting of Tuberculosis outbreak
- Authors: Madhab Barman, Madhurima Panja, Nachiketa Mishra, Tanujit Chakraborty,
- Abstract summary: Tuberosis (TB) remains a formidable global health challenge, driven by complex transmission dynamics and influenced by factors such as population mobility and behavioral changes.
We propose an Epidemic-Guided Deep Learning approach that fuses mechanistic epidemiological principles with advanced deep learning techniques.
- Score: 0.0
- License:
- Abstract: Tuberculosis (TB) remains a formidable global health challenge, driven by complex spatiotemporal transmission dynamics and influenced by factors such as population mobility and behavioral changes. We propose an Epidemic-Guided Deep Learning (EGDL) approach that fuses mechanistic epidemiological principles with advanced deep learning techniques to enhance early warning systems and intervention strategies for TB outbreaks. Our framework is built upon a networked Susceptible-Infectious-Recovered (SIR) model augmented with a saturated incidence rate and graph Laplacian diffusion, capturing both long-term transmission dynamics and region-specific population mobility patterns. Compartmental model parameters are rigorously estimated using Bayesian inference via the Markov Chain Monte Carlo (MCMC) approach. Theoretical analysis leveraging the comparison principle and Green's formula establishes global stability properties of the disease-free and endemic equilibria. Building on these epidemiological insights, we design two forecasting architectures, EGDL-Parallel and EGDL-Series, that integrate the mechanistic outputs of the networked SIR model within deep neural networks. This integration mitigates the overfitting risks commonly encountered in data-driven methods and filters out noise inherent in surveillance data, resulting in reliable forecasts of real-world epidemic trends. Experiments conducted on TB incidence data from 47 prefectures in Japan demonstrate that our approach delivers robust and accurate predictions across multiple time horizons (short to medium-term forecasts). Additionally, incorporating uncertainty quantification through conformal prediction enhances the model's practical utility for guiding targeted public health interventions.
Related papers
- Towards the efficacy of federated prediction for epidemics on networks [5.719600613434056]
We develop a general privacy-level framework for node-level prediction on epidemic networks based on federated learning (FL)
This study offers practical insights into the efficacy of FL scenario in epidemic management.
arXiv Detail & Related papers (2024-12-03T04:37:28Z) - Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph [14.28921518883576]
We introduce an innovative end-to-end framework called Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph (EARTH)
We first propose EANO, which seamlessly integrates the neural ODE approach with the epidemic mechanism.
We also introduce GLTG to model global infection trends and leverage these signals to guide local transmission dynamically.
arXiv Detail & Related papers (2024-09-28T04:07:16Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - MPSTAN: Metapopulation-based Spatio-Temporal Attention Network for
Epidemic Forecasting [2.0297284948237366]
We propose a hybrid model called Metapopulation-based Spatio-Temporal Attention Network (MPSTAN)
This model aims to improve the accuracy of epidemic forecasting by incorporating multi-patch epidemiological knowledge into a-temporal model and adaptively defining inter-patch interactions.
arXiv Detail & Related papers (2023-06-15T18:12:55Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting
Epidemics [2.705025060422369]
Infectious diseases remain among the top contributors to human illness and death worldwide.
Forecasts of epidemics can assist stakeholders in tailoring countermeasures to the situation at hand.
arXiv Detail & Related papers (2022-06-21T19:31:25Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Simulation of Covid-19 epidemic evolution: are compartmental models
really predictive? [0.0]
This paper addresses the question whether a SIR epidemiological model, enriched with asymptomatic and dead individual compartments, could provide reliable predictions on the epidemic evolution.
A machine learning approach based on particle swarm optimization (PSO) is proposed to automatically identify the model parameters based on a training set of data of progressive increasing size.
The analysis of the scatter in the forecasts shows that model predictions are quite sensitive to the size of the dataset used for training, and that further data are still required to achieve convergent -- and therefore reliable -- predictions.
arXiv Detail & Related papers (2020-04-14T08:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.