Super Resolution image reconstructs via total variation-based image deconvolution: a majorization-minimization approach
- URL: http://arxiv.org/abs/2502.10876v1
- Date: Sat, 15 Feb 2025 18:19:47 GMT
- Title: Super Resolution image reconstructs via total variation-based image deconvolution: a majorization-minimization approach
- Authors: Mouhamad Chehaitly,
- Abstract summary: This work aims to reconstruct image sequences with Total Variation regularity in super-resolution.
We explain motion and compute the optical flow of a sequence of images using the Horn-Shunck algorithm to estimate motion.
Super Resolution restoration from motion measurements is also discussed.
- Score: 0.0
- License:
- Abstract: This work aims to reconstruct image sequences with Total Variation regularity in super-resolution. We consider, in particular, images of scenes for which the point-to-point image transformation is a plane projective transformation. We first describe the super-resolution image's imaging observation model, an interpolation and Fusion estimator, and Projection on Convex Sets. We explain motion and compute the optical flow of a sequence of images using the Horn-Shunck algorithm to estimate motion. We then propose a Total Variation regulazer via a Majorization-Minimization approach to obtain a suitable result. Super Resolution restoration from motion measurements is also discussed. Finally, the simulation's part demonstrates the power of the proposed methodology. As expected, this model does not give real-time results, as seen in the numerical experiments section, but it is the cornerstone for future approaches. Finally, the simulation's part demonstrates the power of the proposed methodology. As expected, this model does not give real-time results, as seen in the numerical experiments section, but it is the cornerstone for future approaches.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Super-Resolution Surface Reconstruction from Few Low-Resolution Slices [7.053276723038573]
This paper proposes a new variational model for increasing the resolution of segmented surfaces in numerical simulations.
We implement two numerical algorithms for solving the model, a projected gradient descent method and the alternating direction method of multipliers.
The advantages of the new model are shown through quantitative comparisons by the standard deviation of Gaussian curvatures and mean curvatures from the viewpoint of discrete geometry.
arXiv Detail & Related papers (2023-09-10T16:32:02Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A Variational Approach for Joint Image Recovery and Feature Extraction
Based on Spatially-Varying Generalised Gaussian Models [13.952521992627847]
The joint problem of reconstruction / extraction optimisation is a challenging task in image processing.
It consists in performing, in a joint manner, the restoration of an image and the extraction of the image.
arXiv Detail & Related papers (2022-09-03T09:10:23Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - An Active Contour Model with Local Variance Force Term and Its Efficient
Minimization Solver for Multi-phase Image Segmentation [2.935661780430872]
We propose an active contour model with a local variance force (LVF) term that can be applied to multi-phase image segmentation problems.
With the LVF, the proposed model is very effective in the segmentation of images with noise.
arXiv Detail & Related papers (2022-03-17T02:32:30Z) - Image Deformation Estimation via Multi-Objective Optimization [13.159751065619544]
Free-form deformation model can represent a wide range of non-rigid deformations by manipulating a control point lattice over the image.
It is challenging to fit the model directly to the deformed image for deformation estimation because of the complexity of the fitness landscape.
arXiv Detail & Related papers (2021-06-08T06:52:12Z) - Regularization via deep generative models: an analysis point of view [8.818465117061205]
This paper proposes a new way of regularizing an inverse problem in imaging (e.g., deblurring or inpainting) by means of a deep generative neural network.
In many cases our technique achieves a clear improvement of the performance and seems to be more robust.
arXiv Detail & Related papers (2021-01-21T15:04:57Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
We propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network.
We show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters.
arXiv Detail & Related papers (2020-12-07T09:27:16Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.